scispace - formally typeset
Search or ask a question
Author

Mahendra A. More

Bio: Mahendra A. More is an academic researcher from Savitribai Phule Pune University. The author has contributed to research in topics: Field electron emission & Current density. The author has an hindex of 36, co-authored 268 publications receiving 4871 citations. Previous affiliations of Mahendra A. More include National Chemical Laboratory & North Maharashtra University.


Papers
More filters
Journal ArticleDOI
TL;DR: First-principles density functional calculations suggest that the enhanced field emission may also be due to an overalp of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap.
Abstract: We report here the field emission studies of a layered WS2-RGO composite at the base pressure of ~1 × 10−8 mbar. The turn on field required to draw a field emission current density of 1 μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2-RGO composite respectively. The enhanced field emission behavior observed for the WS2-RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 μA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2-RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overalp of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap.

211 citations

Journal ArticleDOI
26 Aug 2013-Small
TL;DR: Owing to the low turn-on field and planar (sheetlike) structure, the MoS₂ could be utilized for future vacuum microelectronics/nanoelectronic and flat panel display applications.
Abstract: Field emission studies are reported for the first time on layered MoS₂ sheets at the base pressure of ∼1 × 10⁻⁸ mbar. The turn-on field required to draw a field emission current density of 10 μA/cm² is found to be 3.5 V/μm for MoS₂ sheets. The turn-on values are found to be significantly lower than the reported MoS₂ nanoflowers, graphene, and carbon nanotube-based field emitters due to the high field enhancement factor (∼1138) associated with nanometric sharp edges of MoS₂ sheet emitter surface. The emission current-time plots show good stability over a period of 3 h. Owing to the low turn-on field and planar (sheetlike) structure, the MoS₂ could be utilized for future vacuum microelectronics/nanoelectronic and flat panel display applications.

201 citations

Journal ArticleDOI
TL;DR: Field electron emission investigations on pulsed laser-deposited molybdenum disulfide (MoS2) thin films on W-tip and Si substrates hold great promise for the development of PLD MoS2 films in application domains such as field emitters and heterostructures for novel nanoelectronic devices.
Abstract: We report field electron emission investigations on pulsed laser-deposited molybdenum disulfide (MoS2) thin films on W-tip and Si substrates. In both cases, under the chosen growth conditions, the dry process of pulsed laser deposition (PLD) is seen to render a dense nanostructured morphology of MoS2, which is important for local electric field enhancement in field emission application. In the case of the MoS2 film on silicon (Si), the turn-on field required to draw an emission current density of 10 μA/cm2 is found to be 2.8 V/μm. Interestingly, the MoS2 film on a tungsten (W) tip emitter delivers a large emission current density of ∼30 mA/cm2 at a relatively lower applied voltage of ∼3.8 kV. Thus, the PLD-MoS2 can be utilized for various field emission-based applications. We also report our results of photodiode-like behavior in (n- and p- type) Si/PLD-MoS2 heterostructures. Finally we show that MoS2 films deposited on flexible kapton substrate show a good photoresponse and recovery. Our investigations t...

171 citations

Journal ArticleDOI
TL;DR: In this article, the authors synthesize SiO2 nanoparticles from tetraethylorthosilicate (TEOS) as a precursor and PVP as a surfactant by employing sol-gel method.

148 citations

Journal ArticleDOI
TL;DR: The studies suggest that the growth of a multipod structure is governed by the screw dislocation propagation while the vapor-liquid-solid (VLS) mechanism is responsible for the formation of submicron wires and spheres.
Abstract: A simple method of vapor deposition for the shape selective synthesis of ZnO structures, namely, multipods, submicron wires, and spheres, has been successfully demonstrated. A plausible growth mechanism based on the studies of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) is proposed. Our studies suggest that the growth of a multipod structure is governed by the screw dislocation propagation while the vapor-liquid-solid (VLS) mechanism is responsible for the formation of submicron wires and spheres. Moreover, the flow rate of the carrier gas plays a crucial role in governing the morphology. Further, these structures exhibit an enhanced field emission behavior. The nonlinearity in the Fowler-Nordheim (F-N) plot, a characteristic feature of electron emission from semiconductors, is explained by considering the contributions from both the conduction and the valence bands of ZnO.

138 citations


Cited by
More filters
Journal ArticleDOI

3,711 citations

Journal ArticleDOI
TL;DR: ZnO has received much attention over the past few years because it has a wide range of properties that depend on doping, including a range of conductivity from metallic to insulating (including n-type and p-type conductivity), high transparency, piezoelectricity, widebandgap semiconductivity, room-temperature ferromagnetism, and huge magneto-optic and chemical-sensing effects.

1,828 citations

Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations