scispace - formally typeset
Search or ask a question
Author

Mahendra Khened

Bio: Mahendra Khened is an academic researcher from ETH Zurich. The author has contributed to research in topics: Image resolution & Image quality. The author has an hindex of 1, co-authored 1 publications receiving 25 citations.

Papers
More filters
Proceedings ArticleDOI
16 Jun 2019
TL;DR: The first NTIRE challenge on perceptual image enhancement as discussed by the authors focused on proposed solutions and results of real-world photo enhancement problem, where the goal was to map low-quality photos from the iPhone 3GS device to the same photos captured with Canon 70D DSLR camera.
Abstract: This paper reviews the first NTIRE challenge on perceptual image enhancement with the focus on proposed solutions and results. The participating teams were solving a real-world photo enhancement problem, where the goal was to map low-quality photos from the iPhone 3GS device to the same photos captured with Canon 70D DSLR camera. The considered problem embraced a number of computer vision subtasks, such as image denoising, image resolution and sharpness enhancement, image color/contrast/exposure adjustment, etc. The target metric used in this challenge combined PSNR and SSIM scores with solutions' perceptual results measured in the user study. The proposed solutions significantly improved baseline results, defining the state-of-the-art for practical image enhancement.

45 citations


Cited by
More filters
Posted Content
TL;DR: The superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, is shown, suggesting that the HRNet is a stronger backbone for computer vision problems.
Abstract: High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions \emph{in series} (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams \emph{in parallel}; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at~{\url{this https URL}}.

1,278 citations

Journal ArticleDOI
TL;DR: The High-Resolution Network (HRNet) as mentioned in this paper maintains high-resolution representations through the whole process by connecting the high-to-low resolution convolution streams in parallel and repeatedly exchanging the information across resolutions.
Abstract: High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions in series (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams in parallel and (ii) repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at https://github.com/HRNet .

1,162 citations

Proceedings ArticleDOI
01 Jun 2022
TL;DR: Restormer as discussed by the authors proposes an efficient Transformer model by making several key designs in the building blocks (multi-head attention and feed-forward network) such that it can capture long-range pixel interactions, while still remaining applicable to large images.
Abstract: Since convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data, these models have been extensively applied to image restoration and related tasks. Recently, another class of neural architectures, Transformers, have shown significant performance gains on natural language and high-level vision tasks. While the Transformer model mitigates the shortcomings of CNNs (i.e., limited receptive field and inadaptability to input content), its computational complexity grows quadratically with the spatial resolution, therefore making it infeasible to apply to most image restoration tasks involving high-resolution images. In this work, we propose an efficient Transformer model by making several key designs in the building blocks (multi-head attention and feed-forward network) such that it can capture long-range pixel interactions, while still remaining applicable to large images. Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks, including image deraining, single-image motion deblurring, defocus deblurring (single-image and dual-pixel data), and image denoising (Gaussian grayscale/color denoising, and real image denoising). The source code and pre-trained models are available at https://github.com/swz30/Restormer.

136 citations

Posted Content
TL;DR: This paper evaluates the performance and compares the results of all chipsets from Qualcomm, HiSilicon, Samsung, MediaTek and Unisoc that are providing hardware acceleration for AI inference and discusses the recent changes in the Android ML pipeline.
Abstract: The performance of mobile AI accelerators has been evolving rapidly in the past two years, nearly doubling with each new generation of SoCs. The current 4th generation of mobile NPUs is already approaching the results of CUDA-compatible Nvidia graphics cards presented not long ago, which together with the increased capabilities of mobile deep learning frameworks makes it possible to run complex and deep AI models on mobile devices. In this paper, we evaluate the performance and compare the results of all chipsets from Qualcomm, HiSilicon, Samsung, MediaTek and Unisoc that are providing hardware acceleration for AI inference. We also discuss the recent changes in the Android ML pipeline and provide an overview of the deployment of deep learning models on mobile devices. All numerical results provided in this paper can be found and are regularly updated on the official project website: this http URL.

88 citations

Proceedings ArticleDOI
01 Jan 2021
TL;DR: In this paper, the authors introduced the first Mobile AI challenge, where the target is to develop an end-to-end deep learning-based image super-resolution solutions that can demonstrate a realtime performance on mobile or edge NPUs.
Abstract: Image super-resolution is one of the most popular computer vision problems with many important applications to mobile devices. While many solutions have been proposed for this task, they are usually not optimized even for common smartphone AI hardware, not to mention more constrained smart TV platforms that are often supporting INT8 inference only. To address this problem, we introduce the first Mobile AI challenge, where the target is to develop an end-to-end deep learning-based image super-resolution solutions that can demonstrate a real-time performance on mobile or edge NPUs. For this, the participants were provided with the DIV2K dataset and trained quantized models to do an efficient 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated NPU capable of accelerating quantized neural networks. The proposed solutions are fully compatible with all major mobile AI accelerators and are capable of reconstructing Full HD images under 40-60 ms while achieving high fidelity results. A detailed description of all models developed in the challenge is provided in this paper.

74 citations