scispace - formally typeset
Search or ask a question
Author

Maher Kayal

Other affiliations: ETH Zurich, École Polytechnique, Freescale Semiconductor  ...read more
Bio: Maher Kayal is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: CMOS & Hall effect sensor. The author has an hindex of 27, co-authored 275 publications receiving 2992 citations. Previous affiliations of Maher Kayal include ETH Zurich & École Polytechnique.


Papers
More filters
Patent
14 Sep 2005
TL;DR: In this paper, a reference magnetic field generator is adapted to generate a frequency modulated reference magnetic fields at a frequency different from the modulation frequency of the generator, and a modulator connected to the magnetic field sensing cell, adapted to modulate the output signal of the sensor.
Abstract: A magnetic field sensor comprises a reference magnetic field generator (8), a magnetic field sensing cell (6) including Hall effect sensing elements (12), and a signal processing circuit (4) connected to the output (11) of the magnetic field sensing cell and comprising one or more feedback lines (27, 28) for correcting error fluctuations in the transfer characteristic of the magnetic field sensor. The reference magnetic field generator is adapted to generate a frequency modulated reference magnetic field. The signal processing circuit further includes a modulator connected to the magnetic field sensing cell, adapted to modulate the output signal thereof at a frequency different from the modulation frequency of the reference magnetic field generator.

150 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a new technique for continuously calibrating the sensitivity of a current measurement microsystem based on a Hall magnetic field sensor using a variant of the chopper modulation, combined with a second modulation of the reference signal.
Abstract: This paper presents a new technique for continuously calibrating the sensitivity of a current measurement microsystem based on a Hall magnetic field sensor. An integrated reference coil generates a magnetic field for calibration. Using a variant of the chopper modulation, the spinning current technique, combined with a second modulation of the reference signal, the sensitivity of the complete system is continuously measured without interrupting normal operation. Modulation and demodulation schemes allowing the joint processing of both external and reference magnetic fields are proposed. Additional techniques for extracting the very low reference signal are presented. The implementation of the microsystem is then discussed. Finally, measurements validate the calibration principle. A thermal drift lower than 50 ppm/degC is achieved. This is 6-10 times less than in state-of-the-art implementations. Furthermore, the calibration technique also compensates drifts due to mechanical stresses and ageing

110 citations

Journal ArticleDOI
TL;DR: A decentralized cooperative DR framework to manage the daily energy exchanges within a community of Smart-Buildings, in the presence of local Renewable Energy Sources, and shows that nearly all the renewable production resources could be harnessed locally through the presented framework, compared to selfish individual optimization.

97 citations

Journal ArticleDOI
TL;DR: An interoperable intelligent building design is proposed for the creation of advanced building managements schemes, by integrating the assets of current automation tools and the emerging innovations to catalyze the market of intelligent buildings in the context of smart cities.

96 citations

Proceedings ArticleDOI
01 May 1994
TL;DR: In this paper, a CIF representation of the layout and a specific technology description are used to extract a simple parasitic substrate coupling model, which is SPICE compatible and includes a geometrical information that is used to show on the layout the distribution of the equipotential lines produced by a perturbing source.
Abstract: A CAD tool dedicated to parasitic substrate coupling modeling and visualization is presented. A CIF representation of the layout and a specific technology description are used to extract a simple parasitic substrate coupling model. The output is SPICE compatible and includes a geometrical information that is used to show on the layout the distribution of the equipotential lines produced by a perturbing source. Results are compared with measurements and other simulators to demonstrate the accuracy of the model. >

79 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: This exhaustive literature review provides a concrete definition of Industry 4.0 and defines its six design principles such as interoperability, virtualization, local, real-time talent, service orientation and modularity.
Abstract: Manufacturing industry profoundly impact economic and societal progress. As being a commonly accepted term for research centers and universities, the Industry 4.0 initiative has received a splendid attention of the business and research community. Although the idea is not new and was on the agenda of academic research in many years with different perceptions, the term “Industry 4.0” is just launched and well accepted to some extend not only in academic life but also in the industrial society as well. While academic research focuses on understanding and defining the concept and trying to develop related systems, business models and respective methodologies, industry, on the other hand, focuses its attention on the change of industrial machine suits and intelligent products as well as potential customers on this progress. It is therefore important for the companies to primarily understand the features and content of the Industry 4.0 for potential transformation from machine dominant manufacturing to digital manufacturing. In order to achieve a successful transformation, they should clearly review their positions and respective potentials against basic requirements set forward for Industry 4.0 standard. This will allow them to generate a well-defined road map. There has been several approaches and discussions going on along this line, a several road maps are already proposed. Some of those are reviewed in this paper. However, the literature clearly indicates the lack of respective assessment methodologies. Since the implementation and applications of related theorems and definitions outlined for the 4th industrial revolution is not mature enough for most of the reel life implementations, a systematic approach for making respective assessments and evaluations seems to be urgently required for those who are intending to speed this transformation up. It is now main responsibility of the research community to developed technological infrastructure with physical systems, management models, business models as well as some well-defined Industry 4.0 scenarios in order to make the life for the practitioners easy. It is estimated by the experts that the Industry 4.0 and related progress along this line will have an enormous effect on social life. As outlined in the introduction, some social transformation is also expected. It is assumed that the robots will be more dominant in manufacturing, implanted technologies, cooperating and coordinating machines, self-decision-making systems, autonom problem solvers, learning machines, 3D printing etc. will dominate the production process. Wearable internet, big data analysis, sensor based life, smart city implementations or similar applications will be the main concern of the community. This social transformation will naturally trigger the manufacturing society to improve their manufacturing suits to cope with the customer requirements and sustain competitive advantage. A summary of the potential progress along this line is reviewed in introduction of the paper. It is so obvious that the future manufacturing systems will have a different vision composed of products, intelligence, communications and information network. This will bring about new business models to be dominant in industrial life. Another important issue to take into account is that the time span of this so-called revolution will be so short triggering a continues transformation process to yield some new industrial areas to emerge. This clearly puts a big pressure on manufacturers to learn, understand, design and implement the transformation process. Since the main motivation for finding the best way to follow this transformation, a comprehensive literature review will generate a remarkable support. This paper presents such a review for highlighting the progress and aims to help improve the awareness on the best experiences. It is intended to provide a clear idea for those wishing to generate a road map for digitizing the respective manufacturing suits. By presenting this review it is also intended to provide a hands-on library of Industry 4.0 to both academics as well as industrial practitioners. The top 100 headings, abstracts and key words (i.e. a total of 619 publications of any kind) for each search term were independently analyzed in order to ensure the reliability of the review process. Note that, this exhaustive literature review provides a concrete definition of Industry 4.0 and defines its six design principles such as interoperability, virtualization, local, real-time talent, service orientation and modularity. It seems that these principles have taken the attention of the scientists to carry out more variety of research on the subject and to develop implementable and appropriate scenarios. A comprehensive taxonomy of Industry 4.0 can also be developed through analyzing the results of this review.

1,011 citations

Journal ArticleDOI
17 Nov 2011-Nature
TL;DR: In the current generation of transistors, the transistor dimensions have shrunk to such an extent that the electrical characteristics of the device can be markedly degraded, making it unlikely that the exponential decrease in transistor size can continue.
Abstract: For more than four decades, transistors have been shrinking exponentially in size, and therefore the number of transistors in a single microelectronic chip has been increasing exponentially. Such an increase in packing density was made possible by continually shrinking the metal–oxide–semiconductor field-effect transistor (MOSFET). In the current generation of transistors, the transistor dimensions have shrunk to such an extent that the electrical characteristics of the device can be markedly degraded, making it unlikely that the exponential decrease in transistor size can continue. Recently, however, a new generation of MOSFETs, called multigate transistors, has emerged, and this multigate geometry will allow the continuing enhancement of computer performance into the next decade.

842 citations