scispace - formally typeset
Search or ask a question
Author

Mahesh Kumar

Bio: Mahesh Kumar is an academic researcher from Indian Institute of Technology, Jodhpur. The author has contributed to research in topics: Molecular beam epitaxy & Heterojunction. The author has an hindex of 29, co-authored 204 publications receiving 4864 citations. Previous affiliations of Mahesh Kumar include Indian Institutes of Technology & Indian Institute of Technology Delhi.


Papers
More filters
Journal ArticleDOI
TL;DR: This review presents an account of the sources, uptake and transport, and phytotoxic effects of HMs with special attention to different mechanism/s, occurring to mitigate the HMs toxicity in plants employing SP technology.
Abstract: Abstract Unexpected bioaccumulation and biomagnification of heavy metal(loid)s (HMs) in the environment have become a predicament for all living organisms, including plants. The presence of these HMs in the plant system raised the level of reactive oxygen species (ROS) and remodeled several vital cellular biomolecules. These lead to several morphological, physiological, metabolic, and molecular aberrations in plants ranging from chlorosis of leaves to the lipid peroxidation of membranes, and degradation of proteins and nucleic acid including the modulation of the enzymatic system, which ultimately affects the plant growth and productivity. Plants are equipped with several mechanisms to counteract the HMs toxicity. Among them, seed priming (SP) technology has been widely tested with the use of several inorganic chemicals, plant growth regulators (PGRs), gasotransmitters, nanoparticles, living organisms, and plant leaf extracts. The use of these compounds has the potential to alleviate the HMs toxicity through the strengthening of the antioxidant defense system, generation of low molecular weight metallothionein’s (MTs), and phytochelatins (PCs), and improving seedling vigor during early growth stages. This review presents an account of the sources, uptake and transport, and phytotoxic effects of HMs with special attention to different mechanism/s, occurring to mitigate the HMs toxicity in plants employing SP technology. Novelty statement: To the best of our knowledge, this review has delineated the consequences of HMs on the crucial plant processes, which ultimately affect plant growth and development. This review also compiled the up to dated information on phytotoxicity of HMs through the use of SP technology, this review discussed how different types of SP approaches help in diminishing the concentration HMs in plant systems. Also, we depicted mechanisms, represent how HMs transport and their actions on cellular levels, and emphasized, how diverse SP technology effectiveness in the mitigation of plants' phytotoxicity in unique ways.

6 citations

Journal ArticleDOI
TL;DR: In this article , the authors have comprehensively covered different sensing mechanisms used for metal oxide semiconductors (MOS) and discussed different parameters affecting the sensitivity and selectivity of the gas sensors.
Abstract: The usage of the gas sensor has been increasing very rapidly in the industry and in daily life for various potential applications. In the recent years, metal oxide semiconductors (MOS) become the primary choice for designing highly sensitive, stable, and low‐cost real‐life applications‐based gas sensors due to their inherent physical and chemical properties. Researchers have proposed numerous sensing mechanisms to explain the functionality of MOS‐based gas sensors. In this review, we have comprehensively covered different sensing mechanisms used for MOS. We have also discussed different parameters affecting the sensitivity and selectivity of the gas sensors. Moreover, the different techniques used to enhance the gas sensing response of MOS‐based sensors are also extensively covered. And finally, we give our prospective on recent opportunities and challenges on the future applications of MOS‐based gas sensors.

6 citations

Journal ArticleDOI
TL;DR: Detailed inelastic light scattering measurements reflect the strong anisotropic light-matter interaction in this high crystalline symmetric layered MoS2 system especially for the in-plane vibrations, crucial for understanding as well as future application of these materials.
Abstract: Transition metal dichalcogenide, MoS2 has attracted a lot of attention recently owing to its tunable visible range band gap, and anisotropic electronic and transport properties. Here, we report comprehensive inelastic light scattering measurements on both chemical vapor deposition grown (horizontally and vertically aligned) flakes, and mechanically exfoliated flakes of single crystal MoS2. We probe the anisotropic optical response by studying the polarization dependence intensity of the Raman active phonon modes as a function of different incident photon energy and flake thickness. Our polarization dependent Raman studies reveal strong anisotropic behavior reflected in the anomalous renormalization of the modes intensity as a function of flake thickness, phonons and photon energy. Our observations reflect the strong anisotropic light-matter interaction in this high crystalline symmetric layered MoS2 system, especially for the in-plane vibrations, crucial for understanding as well as future applications of these materials.

6 citations

Journal ArticleDOI
TL;DR: In this paper, the substrate effect on InN nanostructures grown by droplet epitaxy has been studied and the morphologies of InN nano-structures were investigated by field emission scanning electron microscopy (FESEM).
Abstract: The substrate effect on InN nanostructures grown by droplet epitaxy has been studied. InN nanostructures were fabricated on Si(111), silicon nitride/Si(111), AlN/Si(111) and Ge(100) substrates by droplet epitaxy using an RF plasma nitrogen source. The morphologies of InN nanostructures were investigated by field emission scanning electron microscopy (FESEM). The chemical bonding configurations of InN nanostructures were examined by x-ray photoelectron spectroscopy (XPS). Photoluminescence spectrum slightly blue shifted compared to the bulk InN, indicating a strong Burstein–Moss effect due to the presence of high electron concentration in the InN dots (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

5 citations

Journal ArticleDOI
TL;DR: In this article , the authors reported significantly enhanced sensitivity of AlGaN/GaN-based high electron mobility transistor (HEMT) sensor by targeted synthesis of IT and 2H coexisting phase MoS2 and applying the gate bias voltage.
Abstract: We report significantly enhanced sensitivity of AlGaN/GaN-based high electron mobility transistor (HEMT) sensor by the targeted synthesis of IT and 2H coexisting phase MoS2 and applying the gate bias voltage. The HEMT structures on Si (111) substrates were used for the detection of Hg2+ ions. The optimum sensitive regime in terms of V GS and V DS of the sensor was investigated by keeping the drain source voltage V DS constant at 2 V and by only varying the gate bias voltage V GS from 0 to 3 V. The strongest sensing response obtained from the device was around 0.547 mA ppb−1 at V GS = 3 V, which is 63.7% higher in comparison to the response achieved at 0 V which shows a sensing response of around 0.334 mA ppb−1. The current response depicts that the fabricated device is very sensitive and selective towards Hg2+ ions. Moreover, the detection limit of our sensor at 3 V was calculated around 6.21 ppt, which attributes to the strong field created between the gate electrode and the HEMT channel due to the presence of 1T metallic phase in synthesized MoS2, indicating that the lower detection limits are achievable in adequate strong fields.

5 citations


Cited by
More filters
Journal ArticleDOI

7,335 citations

Journal ArticleDOI
TL;DR: In this paper, general guidelines for the development of lead-free piezoelectric ceramics are presented, ranging from atom to phase diagram, and the current development stage in lead free piezoceramics is then critically assessed.
Abstract: A large body of work has been reported in the last 5 years on the development of lead-free piezoceramics in the quest to replace lead–zirconate–titanate (PZT) as the main material for electromechanical devices such as actuators, sensors, and transducers. In specific but narrow application ranges the new materials appear adequate, but are not yet suited to replace PZT on a broader basis. In this paper, general guidelines for the development of lead-free piezoelectric ceramics are presented. Suitable chemical elements are selected first on the basis of cost and toxicity as well as ionic polarizability. Different crystal structures with these elements are then considered based on simple concepts, and a variety of phase diagrams are described with attractive morphotropic phase boundaries, yielding good piezoelectric properties. Finally, lessons from density functional theory are reviewed and used to adjust our understanding based on the simpler concepts. Equipped with these guidelines ranging from atom to phase diagram, the current development stage in lead-free piezoceramics is then critically assessed.

2,510 citations

Journal ArticleDOI
TL;DR: In this article, a single-phased ferroelectromagnet BiFeO3 ceramics with high resistivity were synthesized by a rapid liquid phase sintering technique.
Abstract: Single-phased ferroelectromagnet BiFeO3 ceramics with high resistivity were synthesized by a rapid liquid phase sintering technique. Saturated ferroelectric hysteresis loops were observed at room temperature in the ceramics sintered at 880 °C for 450 s. The spontaneous polarization, remnant polarization, and the coercive field are 8.9 μC/cm2, 4.0 μC/cm2, and 39 kV/cm, respectively, under an applied field of 100 kV/cm. It is proposed that the formation of Fe2+ and an oxygen deficiency leading to the higher leakage can be greatly suppressed by the very high heating rate, short sintering period, and liquid phase sintering technique. The latter was also found effective in increasing the density of the ceramics. The sintering technique developed in this work is expected to be useful in synthesizing other ceramics from multivalent or volatile starting materials.

970 citations

Journal ArticleDOI
Ling Zhu1, Wen Zeng1
TL;DR: In this paper, the room-temperature gas sensing properties of ZnO-based gas sensors are comprehensively reviewed, and more attention is particularly paid to the effective strategies that create room temperature gas sensing, mainly including surface modification, additive doping and light activation.
Abstract: Novel gas sensors with high sensing properties, simultaneously operating at room temperature are considerably more attractive owing to their low power consumption, high security and long-term stability. Till date, zinc oxide (ZnO) as semiconducting metal oxide is considered as the promising resistive-type gas sensing material, but elevated operating temperature becomes the bottleneck of its extensive applications in the field of real-time gas monitoring, especially in flammable and explosive gas atmosphere. In this respect, worldwide efforts have been devoted to reducing the operating temperature by means of multiple methods In this communication, room-temperature gas sensing properties of ZnO based gas sensors are comprehensively reviewed. Much more attention is particularly paid to the effective strategies that create room-temperature gas sensing of ZnO based gas sensors, mainly including surface modification, additive doping and light activation. Finally, some perspectives for future investigation on room-temperature gas-sensing materials are discussed as well.

756 citations