scispace - formally typeset
Search or ask a question
Author

Maheshwar Sharon

Other affiliations: Showa Denko
Bio: Maheshwar Sharon is an academic researcher from Indian Institute of Technology Bombay. The author has contributed to research in topics: Thin film & Band gap. The author has an hindex of 19, co-authored 88 publications receiving 1280 citations. Previous affiliations of Maheshwar Sharon include Showa Denko.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a double layer capacitance of carbon nanotubes with H 2 SO 4 was investigated and it was shown that electrons are the majority carriers with a carrier concentration of 1.35×10 20 cm −3.

79 citations

Journal ArticleDOI
TL;DR: In this article, polycrystalline thin films of lead sulphide were electrodeposited on titanium, aluminium and stainless steel (SS) substrates at a constant potential of −0.7V vs. Ag|AgCl|(sat)KCl electrode using 1mM solutions of Pb(NO 3 ) 2 and Na 2 S 2 O 3 at pH 2.7, 2.8 and 2.9.

78 citations

Journal ArticleDOI
TL;DR: In this article, a camphoric carbon solar cell was made and a preliminary investigation of photovoltaic characteristics of a cell of configuration Bdoped C (100 nm)/P-doped c (100nm)/n-Si (380 μm) by electron beam deposition reveal short-circuit current of 1.2 mA cm−2 and an open circuit voltage of 102 mV with fill factor of 0.82, at AM1 condition.

62 citations

Journal ArticleDOI
TL;DR: In this paper, a photoelectrochemical cell p-SnSe|Fe3+, Fe2+|Pt was prepared from its elements by a vapour transport method and the sample was analyzed using X-ray diffraction, scanning electron microscopy and the energy-dispersive analysis of X-rays.

56 citations


Cited by
More filters
01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations

Journal ArticleDOI
TL;DR: A simple one-step NaCl-assisted microwave-solvothermal method has been developed for the preparation of monodisperse α-Fe2O3 mesoporous microspheres, and high photocatalytic activities in the degradation of salicylic acid are observed.
Abstract: A simple one-step NaCl-assisted microwave-solvothermal method has been developed for the preparation of monodisperse α-Fe2O3 mesoporous microspheres. In this approach, Fe(NO3)3 · 9H2O is used as the iron source, and polyvinylpyrrolidone (PVP) acts as a surfactant in the presence of NaCl in mixed solvents of H2O and ethanol. Under the present experimental conditions, monodisperse α-Fe2O3 mesoporous microspheres can form via oriented attachment of α-Fe2O3 nanocrystals. One of the advantages of this method is that the size of α-Fe2O3 mesoporous microspheres can be adjusted in the range from ca. 170 to ca. 260 nm by changing the experimental parameters. High photocatalytic activities in the degradation of salicylic acid are observed for α-Fe2O3 mesoporous microspheres with different specific surface areas.

2,381 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized recent research on and development of semiconductor-based photocatalyst materials that are applicable to environmental remediation and/or chemical synthesis purposes, including the incorporation of noble metal nanoclusters onto the surface of semiconducted particles.
Abstract: This feature article summarizes recent research on and development of semiconductor-based photocatalyst materials that are applicable to environmental remediation and/or chemical synthesis purposes. A wide variety of TiO2 particles and/or films have been studied during the past 30 years because they are the most stable and powerful photocatalysts leading to the degradation of various organic pollutants. The photocatalytic performance of other semiconductor materials such as ZnO, SnO2, WO3, Fe2O3 and CdS has also been intensively investigated. A general limitation in the efficiency of any photocatalytic process is the recombination of the photogenerated charge carriers, i.e., of electrons and holes, following bandgap illumination. Considerable efforts have been made to suppress this recombination and hence to enhance the charge carrier separation and the overall efficiency by means of coupling of different semiconductors with desirable matching of their electronic band structures, or incorporation of noble metal nanoclusters onto the surface of semiconductor photocatalyst particles. Modification of the physicochemical properties, such as particle size, surface area, porosity and/or crystallinity of the semiconductor materials, and optimization of the experimental conditions, such as pH, illumination conditions and/or catalyst loading, during photocatalytic reactions have also been carefully addressed to achieve high reaction rates or yields. To utilize solar energy more efficiently, i.e., to extend the optical absorption of the mostly UV-sensitive photocatalysts into the visible light range, numerous research groups have contributed to the development of novel visible light active photocatalysts. With the application of semiconductors with narrower bandgaps such as CdS, Fe2O3 and WO3 being straightforward choices, doping of wide bandgap semiconductors like TiO2 has been the most popular technique to enhance the catalysts' optical absorption abilities. Research on mixed-oxide-based semiconductor photocatalysts with deliberately modulated band structures has also attracted tremendous attention in the past decade, concentrating on, for example, the generation of H2 and/or O2 from H2O splitting, and the degradation of organic pollutants under visible light irradiation. Both theoretical calculations and experimental results have convincingly shown that the developed materials can serve as highly efficient photocatalysts that are both environmentally and economically significant.

869 citations

Journal ArticleDOI
TL;DR: Chimie de la Matier̀e Condenseé de Paris, UPMC Univ Paris 06, UMR 7574, Colleǵe de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05; Laboratory Heteroelements and Coordination, Chemistry Department, Ecole Polytechnique, CNRS-UMR 7653, Palaiseau, France
Abstract: and Perspectives Sophie Carenco,†,‡,§,∥,⊥ David Portehault,*,†,‡,§ Ced́ric Boissier̀e,†,‡,§ Nicolas Meźailles, and Cleḿent Sanchez*,†,‡,§ †Chimie de la Matier̀e Condenseé de Paris, UPMC Univ Paris 06, UMR 7574, Colleg̀e de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France ‡Chimie de la Matier̀e Condenseé de Paris, CNRS, UMR 77574, Colleg̀e de France, 11 Place Marcellin Berthelot, 75231 Paris Cedex 05, France Chimie de la Matier̀e Condenseé de Paris, Colleg̀e de France, 11 Place Marcellin Berthelot, 75231 Paris Cedex 05, France Laboratory Heteroelements and Coordination, Chemistry Department, Ecole Polytechnique, CNRS-UMR 7653, Palaiseau, France

840 citations

Journal ArticleDOI
TL;DR: A panorama of the latest advancements in the rational design and development of semiconductor polymeric graphitic carbon nitride (g-C3N4) photocatalysts for visible-light-induced hydrogen evolution reaction (HER) is presented in this paper.
Abstract: Semiconductor polymeric graphitic carbon nitride (g-C3N4) photocatalysts have attracted dramatically growing attention in the field of the visible-light-induced hydrogen evolution reaction (HER) because of their facile synthesis, easy functionalization, attractive electronic band structure, high physicochemical stability and photocatalytic activity. This review article presents a panorama of the latest advancements in the rational design and development of g-C3N4 and g-C3N4-based composite photocatalysts for HER application. Concretely, the review starts with the development history, synthetic strategy, electronic structure and physicochemical characteristics of g-C3N4 materials, followed by the rational design and engineering of various nanostructured g-C3N4 (e.g. thinner, highly crystalline, doped, and porous g-C3N4) photocatalysts for HER application. Then a series of highly efficient g-C3N4 (e.g., metal/g-C3N4, semiconductor/g-C3N4, metal organic framework/g-C3N4, carbon/g-C3N4, conducting polymer/g-C3N4, sensitizer/g-C3N4) composite photocatalysts are exemplified. Lastly, this review provides a comprehensive summary and outlook on the major challenges, opportunities, and inspiring perspectives for future research in this hot area on the basis of pioneering works. It is believed that the emerging g-C3N4-based photocatalysts will act as the “holy grail” for highly efficient photocatalytic HER under visible-light irradiation.

717 citations