scispace - formally typeset
Search or ask a question
Author

Mahmoud Shavandi

Other affiliations: Tarbiat Modares University
Bio: Mahmoud Shavandi is an academic researcher from Research Institute of Petroleum Industry. The author has contributed to research in topics: Bioremediation & Environmental remediation. The author has an hindex of 13, co-authored 35 publications receiving 756 citations. Previous affiliations of Mahmoud Shavandi include Tarbiat Modares University.

Papers
More filters
Journal ArticleDOI
TL;DR: An indigenous biosurfactant producing bacterium, Rhodococcus sp strain TA6 was isolated from Iranian oil contaminated soil using an efficient enrichment and screening method during growth on sucrose and several hydrocarbon substrates as sole carbon source as mentioned in this paper.

134 citations

Journal Article
TL;DR: The culture broth was effective in recovering up to 70% of the residual oil from oil-saturated sand packs which indicates the potential value of the biosurfactant in enhanced oil recovery.

129 citations

Journal ArticleDOI
TL;DR: It was postulated that the uncultured Marinobacter strain had the central role in Phenanthrene degradation and the Halomonas strain played an auxiliary role in the culture by utilizing phenanthrene metabolites whose accumulation in the media could be toxic.
Abstract: In this study we investigated the phenanthrene degradation by a halophilic consortium obtained from a saline soil sample. This consortium, named Qphe, could efficiently utilize phenanthrene in a wide range of NaCl concentrations, from 1% to 17% (w/v). Since none of the purified isolates could degrade phenanthrene, serial dilutions were performed and resulted in a simple polycyclic aromatic hydrocarbon (PAH)-degrading culture named Qphe-SubIV which was shown to contain one culturable Halomonas strain and one unculturable strain belonging to the genus Marinobacter. Qphe-SubIV was shown to grow on phenanthrene at salinities as high as 15% NaCl (w/v) and similarly to Qphe, at the optimal NaCl concentration of 5% (w/v), could degrade more than 90% of the amended phenanthrene in 6 days. The comparison of the substrate range of the two consortiums showed that the simplified culture had lost the ability to degrade chrysene but still could grow on other polyaromatic substrates utilized by Qphe. Metabolite analysis by HPLC and GC–MS showed that 2-hydroxy 1-naphthoic acid and 2-naphthol were among the major metabolites accumulated in the Qphe-SubIV culture media, indicating that an initial dioxygenation step might proceed at C1 and C2 positions. By investigating the growth ability on various substrates along with the detection of catechol dioxygenase gene, it was postulated that the uncultured Marinobacter strain had the central role in phenanthrene degradation and the Halomonas strain played an auxiliary role in the culture by utilizing phenanthrene metabolites whose accumulation in the media could be toxic.

104 citations

Journal ArticleDOI
TL;DR: A new phenol-degrading halophilic bacterium isolated from a hypersaline soil is reported, indicating the potential application of the strain PH2-2 for treatment of hypersaline Phenol-containing industrial wastewaters.

86 citations

Journal ArticleDOI
TL;DR: The dszABC genes from newly reported dibenzothiophene biodesulfurizing bacterium, Gordonia alkanivorans RIPI90A were cloned and sequenced and the maximum desulfurization activity by recombinant resting cells was increased 2.67-fold in comparison to the highest desulfURization activity of native resting cells.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries is offered.
Abstract: In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and “green” products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries.

660 citations

08 Aug 1998
TL;DR: PLFA analysis indicated that by week 14 the microbial community structures of the oiled plots were becoming similar to those of the unoiled controls from the same time point, but DGGE analysis suggested that major differences in the bacterial communities remained.
Abstract: A field experiment was conducted in Delaware (USA) to evaluate three crude oil bioremediation techniques. Four treatments were studied: no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum. The microbial populations were monitored by standard MPN techniques, PLFA profile analysis, and 16S rDNA DGGE analysis for species definition. Viable MPN estimates showed high but steadily declining microbial numbers and no significant differences among treatments during the 14-weeks. Regarding the PLFA results, the communities shifted over the 14-week period from being composed primarily of eukaryotes to Gram-negative bacteria. The Gram-negative communities shifted from the exponential to the stationary phase of growth after week 0. All Gram-negative communities showed evidence of environmental stress. The 16S rDNA DGGE profile of all plots revealed eight prominent bands at time zero. The untreated control plots revealed a simple, dynamic dominant population structure throughout the experiment. The original banding pattern disappeared rapidly in all oiled plots, indicating that the dominant species diversity changed and increased substantially over 14 weeks. The nature of this change was altered by nutrient-addition and the addition of the indigenous inoculum.

606 citations

Journal ArticleDOI
TL;DR: This review provides a detailed systematic compilation of the eco-friendly biological treatment solutions for remediation of PAHs such as microbial remediation approaches using bacteria, archaea, fungi, algae, and co-cultures.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are widespread across the globe mainly due to long-term anthropogenic sources of pollution. The inherent properties of PAHs such as heterocyclic aromatic ring structures, hydrophobicity, and thermostability have made them recalcitrant and highly persistent in the environment. PAH pollutants have been determined to be highly toxic, mutagenic, carcinogenic, teratogenic, and immunotoxicogenic to various life forms. Therefore, this review discusses the primary sources of PAH emissions, exposure routes, and toxic effects on humans, in particular. This review briefly summarizes the physical and chemical PAH remediation approaches such as membrane filtration, soil washing, adsorption, electrokinetic, thermal, oxidation, and photocatalytic treatments. This review provides a detailed systematic compilation of the eco-friendly biological treatment solutions for remediation of PAHs such as microbial remediation approaches using bacteria, archaea, fungi, algae, and co-cultures. In situ and ex situ biological treatments such as land farming, biostimulation, bioaugmentation, phytoremediation, bioreactor, and vermiremediation approaches are discussed in detail, and a summary of the factors affecting and limiting PAH bioremediation is also discussed. An overview of emerging technologies employing multi-process combinatorial treatment approaches is given, and newer concepts on generation of value-added by-products during PAH remediation are highlighted in this review.

346 citations

Journal ArticleDOI
TL;DR: This article focuses on the growing understanding of bacteria and archaea responsible for the degradation of hydrocarbons under aerobic conditions in moderate to high salinity conditions and reveals that degradation of oxygenated and non-oxygenated hydrocarbon degradation by halophilic and halotolerant microorganisms occur by pathways similar to those found in non-halophiles.
Abstract: Many hypersaline environments are often contaminated with petroleum compounds. Among these, oil and natural gas production sites all over the world and hundreds of kilometers of coastlines in the more arid regions of Gulf countries are of major concern due to the extent and magnitude of contamination. Because conventional microbiological processes do not function well at elevated salinities, bioremediation of hypersaline environments can only be accomplished using high salt-tolerant microorganisms capable of degrading petroleum compounds. In the last two decades, there have been many reports on the biodegradation of hydrocarbons in moderate to high salinity environments. Numerous microorganisms belonging to the domain Bacteria and Archaea have been isolated and their phylogeny and metabolic capacity to degrade a variety of aliphatic and aromatic hydrocarbons in varying salinities have been demonstrated. This article focuses on our growing understanding of bacteria and archaea responsible for the degradation of hydrocarbons under aerobic conditions in moderate to high salinity conditions. Even though organisms belonging to various genera have been shown to degrade hydrocarbons, members of the genera Halomonas Alcanivorax, Marinobacter, Haloferax, Haloarcula, and Halobacterium dominate the published literature. Despite rapid advances in understanding microbial taxa that degrade hydrocarbons under aerobic conditions, not much is known about organisms that carry out similar processes in anaerobic conditions. Also, information on molecular mechanisms and pathways of hydrocarbon degradation in high salinity is scarce and only recently there have been a few reports describing genes, enzymes and breakdown steps for some hydrocarbons. These limited studies have clearly revealed that degradation of oxygenated and non-oxygenated hydrocarbons by halophilic and halotolerant microorganisms occur by pathways similar to those found in non-halophiles.

261 citations

Journal ArticleDOI
TL;DR: Several biological, physical and chemical and biological techniques have been reported to treat water contaminated by PAHs, but adsorption and combined treatment methods have shown better removal performance, with some methods removing up to 99.99% ofPAHs.

260 citations