scispace - formally typeset
Search or ask a question
Author

Mahmud Fotuhi-Firuzabad

Bio: Mahmud Fotuhi-Firuzabad is an academic researcher from Sharif University of Technology. The author has contributed to research in topics: Electric power system & Reliability (statistics). The author has an hindex of 62, co-authored 432 publications receiving 13107 citations. Previous affiliations of Mahmud Fotuhi-Firuzabad include University of Tehran & Shiraz University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A stochastic model to schedule reserves provided by DR in the wholesale electricity markets and determine commitment states of generating units and their scheduled energy and spinning reserves in the scheduling horizon is presented.
Abstract: Considerable developments in the real-time telemetry of demand-side systems allow independent system operators (ISOs) to use reserves provided by demand response (DR) in ancillary service markets. Currently, many ISOs have designed programs to utilize the reserve provided by DR in electricity markets. This paper presents a stochastic model to schedule reserves provided by DR in the wholesale electricity markets. Demand-side reserve is supplied by demand response providers (DRPs), which have the responsibility of aggregating and managing customer responses. A mixed-integer representation of reserve provided by DRPs and its associated cost function are used in the proposed stochastic model. The proposed stochastic model is formulated as a two-stage stochastic mixed-integer programming (SMIP) problem. The first-stage involves network-constrained unit commitment in the base case and the second-stage investigates security assurance in system scenarios. The proposed model would schedule reserves provided by DRPs and determine commitment states of generating units and their scheduled energy and spinning reserves in the scheduling horizon. The proposed approach is applied to two test systems to illustrate the benefits of implementing demand-side reserve in electricity markets.

442 citations

Journal ArticleDOI
TL;DR: A comprehensive model is proposed to study the PHEV impacts on residential distribution systems and its fundamental characteristics, i.e., PHEV battery capacity, PHEV state of charge (SOC), and PHEV energy consumption in daily trips are accurately modeled.
Abstract: Despite the economic and environmental advantages of plug-in hybrid electric vehicles (PHEVs), the increased utilization of PHEVs brings up new concerns for power distribution system decision makers. Impacts of PHEVs on distribution networks, although have been proven to be noticeable, have not been thoroughly investigated for future years. In this paper, a comprehensive model is proposed to study the PHEV impacts on residential distribution systems. In so doing, PHEV fundamental characteristics, i.e., PHEV battery capacity, PHEV state of charge (SOC), and PHEV energy consumption in daily trips, are accurately modeled. As some of these effective characteristics depend on vehicle owner's behavior, their behavior and interests are considered in the proposed model. Also, to get a more practical model of PHEVs, the number of vehicles in a residential distribution network, the PHEV penetration level for upcoming years, distribution of PHEVs in the network, and estimation of household load growth for upcoming years are extracted from related published reports. The proposed model is applied to the IEEE 34-node test feeder, and PHEV impacts on residential distribution network are studied in different time horizons. A sensitivity analysis is also performed to demonstrate the effects of PHEV operation modes on the network load profile.

409 citations

Journal ArticleDOI
TL;DR: In this paper, a model for the optimal placement of contingency-constrained phasor measurement units (PMUs) in electric power networks is presented, where the communication constraints which would limit the maximum number of measurements associated with each installed PMU are considered as measurement limitations.
Abstract: In this paper, a model for the optimal placement of contingency-constrained phasor measurement units (PMUs) in electric power networks is presented. The conventional complete observability of power networks is first formulated and then, different contingency conditions in power networks including measurement losses and line outages are added to the main model. The communication constraints which would limit the maximum number of measurements associated with each installed PMU is considered as measurement limitations. The relevant formulations are also proposed to make the model more comprehensive. The IEEE standard test systems are examined for the applicability of proposed model. The comparison of presented results with those of other methods is presented which would justify the effectiveness of proposed model with regards to minimizing the total number of PMUs and the execution time. A large-scale system with 2383 buses is also analyzed to exhibit the applicability of proposed model to practical power system cases.

380 citations

Journal ArticleDOI
TL;DR: An appropriate framework is devised and the roles and tasks of different management entities in a multi-microgrids system are introduced and the effectiveness in confronting with different outage events is demonstrated through realistic case studies.
Abstract: This paper proposes a hierarchical outage management scheme to enhance the resilience of a smart distribution system comprised of multi-microgrids against unexpected disaster events. In this regard, after identifying the main features and requirements for a resilient outage management scheme, an appropriate framework is devised and the roles and tasks of different management entities in a multi-microgrids system are introduced. Based on this framework, the microgrids schedule their available resources in the first stage using a novel model predictive control-based algorithm. In the second stage, distribution system operator coordinates the possible power transfers among the microgrids and utilizes the unused capacities of microgrids’ resources for feeding the unserved loads in stage I. The general optimization model that needs to be run is formulated as a mixed integer linear programming problem and a novel index is presented to quantify the performance of the proposed method. The developed scheme is implemented on a test system and its effectiveness in confronting with different outage events is demonstrated through realistic case studies.

308 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the application of immunity genetic algorithm (IGA) for the problem of optimal placement of phasor measurement units (PMUs) in an electric power network.
Abstract: This paper investigates the application of immunity genetic algorithm (IGA) for the problem of optimal placement of phasor measurement units (PMUs) in an electric power network. The problem is to determine the placement sites of the minimal set of PMUs which makes the system observable. Incorporating immune operator in the canonical genetic algorithm (GA), on the condition of preserving GA's advantages, utilizes some characteristics and knowledge of the problems for restraining the degenerative phenomena during evolution, so as to improve the algorithm efficiency. This type of prior knowledge about some parts of optimal solution exists in the PMU placement problem. So, the IGA is adopted in this paper to solve the problem. Also, a new effect which is preventing from familial reproduction is studied which shows an increase in converging speed. The effectiveness of the proposed method is verified via IEEE standard systems and a realistic large-scale power system.

302 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
01 Jan 2009

8,216 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey the literature till 2011 on the enabling technologies for the Smart Grid and explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.
Abstract: The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this article, we survey the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system. We also propose possible future directions in each system. colorred{Specifically, for the smart infrastructure system, we explore the smart energy subsystem, the smart information subsystem, and the smart communication subsystem.} For the smart management system, we explore various management objectives, such as improving energy efficiency, profiling demand, maximizing utility, reducing cost, and controlling emission. We also explore various management methods to achieve these objectives. For the smart protection system, we explore various failure protection mechanisms which improve the reliability of the Smart Grid, and explore the security and privacy issues in the Smart Grid.

2,433 citations

01 Jan 2012
TL;DR: This article surveys the literature till 2011 on the enabling technologies for the Smart Grid, and explores three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.

2,337 citations

Journal ArticleDOI
TL;DR: In this article, a survey of demand response potentials and benefits in smart grids is presented, with reference to real industrial case studies and research projects, such as smart meters, energy controllers, communication systems, etc.
Abstract: The smart grid is conceived of as an electric grid that can deliver electricity in a controlled, smart way from points of generation to active consumers. Demand response (DR), by promoting the interaction and responsiveness of the customers, may offer a broad range of potential benefits on system operation and expansion and on market efficiency. Moreover, by improving the reliability of the power system and, in the long term, lowering peak demand, DR reduces overall plant and capital cost investments and postpones the need for network upgrades. In this paper a survey of DR potentials and benefits in smart grids is presented. Innovative enabling technologies and systems, such as smart meters, energy controllers, communication systems, decisive to facilitate the coordination of efficiency and DR in a smart grid, are described and discussed with reference to real industrial case studies and research projects.

1,901 citations