scispace - formally typeset
Search or ask a question
Author

Mai Vu

Bio: Mai Vu is an academic researcher from Tufts University. The author has contributed to research in topics: Relay & MIMO. The author has an hindex of 27, co-authored 159 publications receiving 3656 citations. Previous affiliations of Mai Vu include Harvard University & Stanford University.


Papers
More filters
Journal ArticleDOI
TL;DR: This article highlights some of the recent information theoretic limits, models, and design of these promising networks of intelligent, adaptive wireless devices called cognitive radios.
Abstract: In recent years, the development of intelligent, adaptive wireless devices called cognitive radios, together with the introduction of secondary spectrum licensing, has led to a new paradigm in communications: cognitive networks. Cognitive networks are wireless networks that consist of several types of users: often a primary user (the primary license-holder of a spectrum band) and secondary users (cognitive radios). These cognitive users employ their cognitive abilities to communicate without harming the primary users. The study of cognitive networks is relatively new and many questions are yet to be answered. In this article we highlight some of the recent information theoretic limits, models, and design of these promising networks.

502 citations

Journal ArticleDOI
TL;DR: This article provides a tutorial of linear precoding for a frequency- flat, single-user MIMO wireless system, examining both theoretical foundations and practical issues.
Abstract: This article provides a tutorial of linear precoding for a frequency- flat, single-user MIMO wireless system, examining both theoretical foundations and practical issues The article first discusses principles for CSIT (channel-side information at the transmitter) acquisition and develops a dynamic CSIT model, which spans perfectly to statistical CSIT, taking into account channel temporal variation It then presents the capacity benefits of CSIT and information theoretic arguments for exploiting the CSIT by linear precoding A precoded system structure is then described, involving an encoder and a linear precoder Criteria for designing the precoder are then discussed, followed by specific designs for different CSIT scenarios

368 citations

Journal ArticleDOI
TL;DR: Borders on the primary exclusive radius RO and the guard band isinp are determined to guarantee an outage performance for the primary user, even with an arbitrarily large number of cognitive users uniformly distributed with constant density outside the primaryexclusive region.
Abstract: We study a cognitive network consisting of a single primary transmitter and multiple secondary, or cognitive, users. The primary transmitter, located at the center of the network, communicates with primary receivers within a disc called the primary exclusive region (PER). Inside the PER, no cognitive users may transmit, in order to guarantee an outage probability for the primary receivers within. Outside the PER, uniformly distributed cognitive users may transmit, provided they are at a certain protected radius from a primary receiver. We analyze the aggregated interference from the cognitive transmitters to a primary receiver within the PER. Based on this interference and the outage guarantee, we derive bounds on the radius of the PER, showing its interdependence on the receiver protected distance and other system parameters. We also extend the analysis to allowing the cognitive users to scale their power according to the distance from the primary transmitter. These studies provide a closed-form, theoretical analysis of such a network geometry with PER, which may be relevant in the upcoming spectrum sharing actions.

206 citations

Journal ArticleDOI
TL;DR: This paper proposes linear precoder designs exploiting statistical channel knowledge at the transmitter in a multiple-input multiple-output (MIMO) wireless system, using a convex optimization framework to minimize the Chernoff bound on the pairwise error probability (PEP) between a pair of block codewords.
Abstract: This paper proposes linear precoder designs exploiting statistical channel knowledge at the transmitter in a multiple-input multiple-output (MIMO) wireless system. The paper focuses on channel statistics, since obtaining real-time channel state information at the transmitter can be difficult due to channel dynamics. The considered channel statistics consist of the channel mean and transmit antenna correlation. The receiver is assumed to know the instantaneous channel precisely. The precoder operates along with a space-time block code (STBC) and aims to minimize the Chernoff bound on the pairwise error probability (PEP) between a pair of block codewords, averaged over channel fading statistics. Two PEP design criteria are studied-minimum distance and average distance. The optimal precoder with an orthogonal STBC is established, using a convex optimization framework. Different relaxations then extend the solution to systems with nonorthogonal STBCs. In both cases, the precoder is a function of both the channel mean and the transmit correlation. A linear precoder acts as a combination of a multimode beamformer and an input shaping matrix, matching each side to the channel and to the input signal structure, respectively. Both the optimal beam direction and the power of each mode, obtained via a dynamic water-filling process, depend on the signal-to-noise ratio (SNR). Asymptotic analyses of the results reveal that, for all STBCs, the precoder approaches a single-mode beamformer on the dominant right singular vector of the channel mean as the channel K factor increases. On the other hand, as the SNR increases, it approaches an equipower multiple-mode beamformer, matched to the eigenvectors of the transmit correlation. Design examples and numerical simulation results for both orthogonal and nonorthogonal STBC precoding solutions are provided, illustrating the precoding array gain.

169 citations

Journal ArticleDOI
Mai Vu1
TL;DR: In closed-form, the capacity and the optimal signaling scheme for a MISO channel with per-antenna power constraint are established and two cases of channel state information are considered: constant channel known at both the transmitter and receiver, and Rayleigh fading channel known only at the receiver.
Abstract: We establish in closed-form the capacity and the optimal signaling scheme for a MISO channel with per-antenna power constraint. Two cases of channel state information are considered: constant channel known at both the transmitter and receiver, and Rayleigh fading channel known only at the receiver. For the first case, the optimal signaling scheme is beamforming with the phases of the beam weights matched to the phases of the channel coefficients, but the amplitudes independent of the channel coefficients and dependent only on the constrained powers. For the second case, the optimal scheme is to send independent signals from the antennas with the constrained powers. In both cases, the capacity with per-antenna power constraint is usually less than that with sum power constraint.

159 citations


Cited by
More filters
Journal Article
TL;DR: This research examines the interaction between demand and socioeconomic attributes through Mixed Logit models and the state of art in the field of automatic transport systems in the CityMobil project.
Abstract: 2 1 The innovative transport systems and the CityMobil project 10 1.1 The research questions 10 2 The state of art in the field of automatic transport systems 12 2.1 Case studies and demand studies for innovative transport systems 12 3 The design and implementation of surveys 14 3.1 Definition of experimental design 14 3.2 Questionnaire design and delivery 16 3.3 First analyses on the collected sample 18 4 Calibration of Logit Multionomial demand models 21 4.1 Methodology 21 4.2 Calibration of the “full” model. 22 4.3 Calibration of the “final” model 24 4.4 The demand analysis through the final Multinomial Logit model 25 5 The analysis of interaction between the demand and socioeconomic attributes 31 5.1 Methodology 31 5.2 Application of Mixed Logit models to the demand 31 5.3 Analysis of the interactions between demand and socioeconomic attributes through Mixed Logit models 32 5.4 Mixed Logit model and interaction between age and the demand for the CTS 38 5.5 Demand analysis with Mixed Logit model 39 6 Final analyses and conclusions 45 6.1 Comparison between the results of the analyses 45 6.2 Conclusions 48 6.3 Answers to the research questions and future developments 52

4,784 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Journal ArticleDOI
24 Apr 2009
TL;DR: This information-theoretic survey provides guidelines for the spectral efficiency gains possible through cognitive radios, as well as practical design ideas to mitigate the coexistence challenges in today's crowded spectrum.
Abstract: Cognitive radios hold tremendous promise for increasing spectral efficiency in wireless systems. This paper surveys the fundamental capacity limits and associated transmission techniques for different wireless network design paradigms based on this promising technology. These paradigms are unified by the definition of a cognitive radio as an intelligent wireless communication device that exploits side information about its environment to improve spectrum utilization. This side information typically comprises knowledge about the activity, channels, codebooks, and/or messages of other nodes with which the cognitive node shares the spectrum. Based on the nature of the available side information as well as a priori rules about spectrum usage, cognitive radio systems seek to underlay, overlay, or interweave the cognitive radios' signals with the transmissions of noncognitive nodes. We provide a comprehensive summary of the known capacity characterizations in terms of upper and lower bounds for each of these three approaches. The increase in system degrees of freedom obtained through cognitive radios is also illuminated. This information-theoretic survey provides guidelines for the spectral efficiency gains possible through cognitive radios, as well as practical design ideas to mitigate the coexistence challenges in today's crowded spectrum.

2,516 citations

Journal ArticleDOI

2,415 citations

Journal ArticleDOI
TL;DR: This tutorial provides a broad look at the field of limited feedback wireless communications, and reviews work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology.
Abstract: It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channel knowledge at the transmitter. The transmitter in many systems (such as those using frequency division duplexing) can not leverage techniques such as training to obtain channel state information. Over the last few years, research has repeatedly shown that allowing the receiver to send a small number of information bits about the channel conditions to the transmitter can allow near optimal channel adaptation. These practical systems, which are commonly referred to as limited or finite-rate feedback systems, supply benefits nearly identical to unrealizable perfect transmitter channel knowledge systems when they are judiciously designed. In this tutorial, we provide a broad look at the field of limited feedback wireless communications. We review work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology. We also provide a synopsis of the role of limited feedback in the standardization of next generation wireless systems.

1,605 citations