scispace - formally typeset
Search or ask a question
Author

Majid Zandi

Bio: Majid Zandi is an academic researcher from Shahid Beheshti University. The author has contributed to research in topics: Photovoltaic system & Renewable energy. The author has an hindex of 14, co-authored 63 publications receiving 893 citations. Previous affiliations of Majid Zandi include University of Lorraine & United States Department of Energy.


Papers
More filters
Journal ArticleDOI
TL;DR: The main property of this strategy is that the energy management in the power source is carried out with a single general control algorithm in different operating modes, consequently avoiding any algorithm commutation.
Abstract: This paper presents an energy management method in an electrical hybrid power source (EHPS) for electric vehicular applications. The method is based on the flatness control technique (FCT) and fuzzy logic control (FLC). This EHPS is composed of a fuel cell system as the main source and two energy storage sources (ESSs)-a bank of supercapacitors (SCs) and a bank of batteries (BATs)-as the auxiliary source. With this hybridization, the volume and mass of the EHPS can be reduced, because the high energy density of BAT and high power density of SC are utilized. In the proposed novel control strategy, the FCT is used to manage the energy between the main and the auxiliary sources, and the FLC is employed to share the power flow in the ESS between the SC and the BAT. The power sharing depends on the load power and the state of charge of the SC and the BAT. EHPS is controlled by the regulation of the stored electrostatic energy in the dc buses. The main property of this strategy is that the energy management in the power source is carried out with a single general control algorithm in different operating modes, consequently avoiding any algorithm commutation. An EHPS test bench has been assembled and equipped with a real-time system controller based on a dSPACE. The experimental results validate the efficiency of the proposed control strategy.

360 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of dust accumulation on PV performance in Tehran, Iran, a 70-day experiment, started on May 9th, 2017, was developed, and the results indicated that after 70 days without raining, 6.0986 (g/m2) dust was accumulated on the surface, which caused 21.47% reduction in the power output.

168 citations

Journal ArticleDOI
TL;DR: The present review, ultrasonic nano-emulsification is critically reviewed and assessed by focusing on the main parameters such pre-emulsion processes, multi-frequency or multi-step irradiations and also surfactant-free parameters.

101 citations

Journal ArticleDOI
TL;DR: The overall complexity is decreased by simplifying the fuzzy logic part and the three-point weight method is another MPPT method that does not compromise on the maximum power point under fast transient conditions.

65 citations

Journal ArticleDOI
TL;DR: In this article, four scenarios have been considered due to the new legislation for the photovoltaic system utilization in residential sectors; furthermore, an economic analysis and the environmental impact of the scenarios has been briefly examined.

53 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: In this article, the state-of-the-art of the energy sources, storage devices, power converters, low-level control energy management strategies and high supervisor control algorithms used in electric vehicles are reviewed.
Abstract: The issues of global warming and depletion of fossil fuels have paved opportunities to electric vehicle (EV). Moreover, the rapid development of power electronics technologies has even realized high energy-efficient vehicles. EV could be the alternative to decrease the global green house gases emission as the energy consumption in the world transportation is high. However, EV faces huge challenges in battery cost since one-third of the EV cost lies on battery. This paper reviews state-of-the-art of the energy sources, storage devices, power converters, low-level control energy management strategies and high supervisor control algorithms used in EV. The comparison on advantages and disadvantages of vehicle technology is highlighted. In addition, the standards and patterns of drive cycles for EV are also outlined. The advancement of power electronics and power processors has enabled sophisticated controls (low-level and high supervisory algorithms) to be implemented in EV to achieve optimum performance as well as the realization of fast-charging stations. The rapid growth of EV has led to the integration of alternative resources to the utility grid and hence smart grid control plays an important role in managing the demand. The awareness of environmental issue and fuel crisis has brought up the sales of EV worldwide.

1,077 citations

Journal ArticleDOI
TL;DR: In this article, a review of the state-of-the-art models for electrical, self-discharge, and thermal behaviors of supercapacitors is presented, where electrochemical, equivalent circuit, intelligent, and fractional-order models are highlighted.
Abstract: Supercapacitors (SCs) have high power density and exceptional durability. Progress has been made in their materials and chemistries, while extensive research has been carried out to address challenges of SC management. The potential engineering applications of SCs are being continually explored. This paper presents a review of SC modeling, state estimation, and industrial applications reported in the literature, with the overarching goal to summarize recent research progress and stimulate innovative thoughts for SC control/management. For SC modeling, the state-of-the-art models for electrical, self-discharge, and thermal behaviors are systematically reviewed, where electrochemical, equivalent circuit, intelligent, and fractional-order models for electrical behavior simulation are highlighted. For SC state estimation, methods for State-of-Charge (SOC) estimation and State-of-Health (SOH) monitoring are covered, together with an underlying analysis of aging mechanism and its influencing factors. Finally, a wide range of potential SC applications is summarized. Particularly, co-working with high energy-density devices constitutes hybrid energy storage for renewable energy systems and electric vehicles (EVs), sufficiently reaping synergistic benefits of multiple energy-storage units.

567 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the latest advances in electric cars technology and their design specifications and compared the characteristics and the technologies of the three types of electric cars now available in the market.

319 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive survey of fuel cell-based hybrid electric vehicles (HEVs) on their source combination, models, energy management system (EMS) etc.
Abstract: Emerging issues on fuel price and greenhouse gas emissions have attracted attention on the alternative energy sources, especially in transportation sector. The transportation sector accounts for 40% of total fuel consumption. Thus, an increasing number of studies have been conducted on hybrid electric vehicles (HEVs) and their energy management system (EMS). This paper focuses on reviews of EMSs for fuel cell (FC) based HEV in combination with battery and super-capacitor, respectively. Various aspects and classifications of fuel cell–HEV EMS are explained in this paper. Different types of FC–HEV control models and algorithms derived from simulation and experiment are explained in details for an analytical justification for the most optimal control strategy. The performances of the various combinations of FC–HEV system are summarized in the table along with relevant references. This paper provides comprehensive survey of FC–HEV on their source combination, models, energy management system (EMS) etc. developed by various researchers. From the rigorous review, it is observed that the existing technologies more or less are capable to perform well; however, the reliability and the intelligent systems are still not up to the mark. Accordingly, current issues and challenges on the FC–HEV technologies are highlighted with a brief suggestions and discussion for the progress of future FC–HEV vehicle research. This review will hopefully lead to increasing efforts towards the development of economic, longer lifetime, hydrogen viable, efficient electronic interface and well performed EMS for future FC–HEV.

316 citations