scispace - formally typeset
Search or ask a question
Author

Makina Yabashi

Bio: Makina Yabashi is an academic researcher from Uppsala University. The author has contributed to research in topics: Laser & Free-electron laser. The author has an hindex of 62, co-authored 678 publications receiving 17150 citations. Previous affiliations of Makina Yabashi include University of Tokyo & Tohoku University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the SPring-8 Angstrom Compact Free-Electron Laser (CFEL) was used for sub-angstrom fundamental-wavelength lasing at the Tokyo National Museum.
Abstract: Researchers report sub-angstrom fundamental-wavelength lasing at the SPring-8 Angstrom Compact Free-Electron Laser in Japan. The output has a maximum power of more than 10 GW, a pulse duration of 10−14 s and a lasing wavelength of 0.634 A.

1,467 citations

Journal ArticleDOI
TL;DR: In this paper, an in situ technique that corrects for wavefront aberrations and allows X-rays to be focused to a spot just 7 nm wide could provide a solution.
Abstract: X-ray sources such as free-electron lasers offer the potential to study matter at unprecedented spatial and temporal resolution. But that potential is limited by the poor quality of conventional X-ray optical elements. An in situ technique that corrects for wavefront aberrations and allows X-rays to be focused to a spot just 7 nm wide could provide a solution.

493 citations

Journal ArticleDOI
02 Mar 2017-Nature
TL;DR: The structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å are described, providing a mechanism for the O=O bond formation consistent with that proposed previously.
Abstract: Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 A resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 A using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 angstrom compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 A from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 A between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously

455 citations

Journal ArticleDOI
TL;DR: In this paper, a 55m-long compact self-amplified spontaneous emission (SEM) source with a low acceleration energy of 250 MeV was used to generate X-ray free-electron laser radiation with a 2-GeV machine.
Abstract: Single-pass free-electron lasers based on self-amplified spontaneous emission1,2,3,4 are enabling the generation of laser light at ever shorter wavelengths, including extreme ultraviolet5, soft X-rays and even hard X-rays6,7,8. A typical X-ray free-electron laser is a few kilometres in length and requires an electron-beam energy higher than 10 GeV (refs 6, 8). If such light sources are to become accessible to more researchers, a significant reduction in scale is desirable Here, we report observations of brilliant extreme-ultraviolet radiation from a 55-m-long compact self-amplified spontaneous-emission source, which combines short-period undulators with a high-quality electron source operating at a low acceleration energy of 250 MeV. The radiation power reaches saturation at wavelengths ranging from 51 to 61 nm with a maximum pulse energy of 30 µJ. The ultralow emittance (0.6π mm mrad) of the electron beam from a CeB6 thermionic cathode9 is barely degraded by a multiple-stage bunch compression system that dramatically enhances the beam current from 1 to 300 A. This achievement expands the potential for generating X-ray free-electron laser radiation with a compact 2-GeV machine. Free-electron lasers can produce powerful pulses of radiation at very short wavelengths, even in the hard-X-ray region. In general, however, they comprise facilities several kilometres in length. A 55-m-long laser could open up the technology to a broader range of researchers.

369 citations

Journal ArticleDOI
23 Dec 2016-Science
TL;DR: Time-resolved serial femtosecond crystallography at an x-ray free electron laser shows how motions are choreographed as bR transports protons uphill against a transmembrane concentration gradient.
Abstract: Bacteriorhodopsin (bR) is a light-driven proton pump and a model membrane transport protein. We used time-resolved serial femtosecond crystallography at an x-ray free electron laser to visualize conformational changes in bR from nanoseconds to milliseconds following photoactivation. An initially twisted retinal chromophore displaces a conserved tryptophan residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key water molecule on the extracellular side. The resulting cascade of structural changes throughout the protein shows how motions are choreographed as bR transports protons uphill against a transmembrane concentration gradient.

322 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: The Linac Coherent Light Source free-electron laser has achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons.
Abstract: The Linac Coherent Light Source free-electron laser has now achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons. Researchers detail the first operation and beam characteristics of the system, which give hope for imaging at atomic spatial and temporal scales.

2,648 citations