scispace - formally typeset
Search or ask a question
Author

Makoto Kiso

Other affiliations: Medical Research Council, Kyoto University, Asahi University  ...read more
Bio: Makoto Kiso is an academic researcher from Gifu University. The author has contributed to research in topics: Sialic acid & Ganglioside. The author has an hindex of 59, co-authored 561 publications receiving 14021 citations. Previous affiliations of Makoto Kiso include Medical Research Council & Kyoto University.


Papers
More filters
Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: It is shown that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptor exclusively.
Abstract: H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects. Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid-alpha2,6-galactose (SAalpha2,6Gal), whereas the latter prefer those ending in SAalpha2,3Gal (refs 3-6). A conversion from SAalpha2,3Gal to SAalpha2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates.

593 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the requirement for the hemagglutinin (HA) for support of viral replication in horses, using viruses whose HAs differ in receptor specificity.
Abstract: The distribution of sialic acid (SA) species varies among animal species, but the biological role of this variation is largely unknown. Influenza viruses differ in their ability to recognize SA-galactose (Gal) linkages, depending on the animal hosts from which they are isolated. For example, human viruses preferentially recognize SA linked to Gal by the α2,6(SAα2,6Gal) linkage, while equine viruses favor SAα2,3Gal. However, whether a difference in relative abundance of specific SA species (N-acetylneuraminic acid [NeuAc] and N-glycolylneuraminic acid [NeuGc]) among different animals affects the replicative potential of influenza viruses is uncertain. We therefore examined the requirement for the hemagglutinin (HA) for support of viral replication in horses, using viruses whose HAs differ in receptor specificity. A virus with an HA recognizing NeuAcα2,6Gal but not NeuAcα2,3Gal or NeuGcα2,3Gal failed to replicate in horses, while one with an HA recognizing the NeuGcα2,3Gal moiety replicated in horses. Furthermore, biochemical and immunohistochemical analyses and a lectin-binding assay demonstrated the abundance of the NeuGcα2,3Gal moiety in epithelial cells of horse trachea, indicating that recognition of this moiety is critical for viral replication in horses. Thus, these results provide evidence of a biological effect of different SA species in different animals.

500 citations

Journal ArticleDOI
TL;DR: Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray is determined by carbohydrates microarray.
Abstract: Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray

332 citations

Journal ArticleDOI
TL;DR: It is reported that a limited set of structurally related gangliosides, known to be expressed on myelinated neurons in vivo, are ligands for MAG, consistent with the conclusion that MAG-mediated cell-cell interactions involve MAG-ganglioside recognition and binding.
Abstract: Nerve cells depend on specific interactions with glial cells for proper function. Myelinating glial cells are thought to associate with neuronal axons, in part, via the cell-surface adhesion protein, myelin-associated glycoprotein (MAG). MAG is also thought to be a major inhibitor of neurite outgrowth (axon regeneration) in the adult central nervous system. Primary structure and in vitro function place MAG in an immunoglobulin-related family of sialic acid-binding lactins. We report that a limited set of structurally related gangliosides, known to be expressed on myelinated neurons in vivo, are ligands for MAG. When major brain gangliosides were adsorbed as artificial membranes on plastic microwells, only GT1b and GD1a supported cell adhesion of MAG-transfected COS-1 cells. Furthermore, a quantitatively minor ganglioside expressed on cholinergic neurons, GQ1b alpha (also known as Chol-1 alpha-b), was much more potent than GT1b or GD1a in supporting MAG-mediated cell adhesion. Adhesion to either GT1b or GQ1b alpha was abolished by pretreatment of the adsorbed gangliosides with neuraminidase. On the basis of structure-function studies of 19 test glycosphingolipids, an alpha 2,3-N-acetylneuraminic acid residue on the terminal galactose of a gangliotetraose core is necessary for MAG binding, and additional sialic acid residues linked to the other neutral core saccharides [Gal(II) and GalNAc(III)] contribute significantly to binding affinity. MAG-mediated adhesion to gangliosides was blocked by pretreatment of the MAG-transfected COS-1 cells with anti-MAG monoclonal antibody 513, which is known to inhibit oligodendrocyte-neuron binding. These data are consistent with the conclusion that MAG-mediated cell-cell interactions involve MAG-ganglioside recognition and binding.

290 citations

Journal ArticleDOI
TL;DR: The newly generated monoclonal antibodies directed against 6-sulfo sialyl Lewis X, which intensely labeled HEV in immunohistochemical examination and inhibited binding of recombinant L- selectin-IgG to HEV, suggest that the determinant serves as a ligand for L-selectin.

248 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The impacts of RGD peptide surface density, spatial arrangement as well as integrin affinity and selectivity on cell responses like adhesion and migration are discussed.

2,443 citations

Journal ArticleDOI
TL;DR: The postulated functions of the recently discovered CD33-related Siglecs are discussed and the factors that seem to be driving their rapid evolution are considered.
Abstract: Through binding ubiquitous sialic-acid residues on cell surfaces, the Siglec family of lectins promote cell–cell interactions and regulate the functions of numerous immune-cell types. This Review describes the emerging roles of Siglecs in pathogen recognition and endocytosis.

1,648 citations

Journal ArticleDOI
18 Jun 2009-Nature
TL;DR: It is shown that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood–brain barrier crossing and brain colonization.
Abstract: The molecular basis for breast cancer metastasis to the brain is largely unknown. Brain relapse typically occurs years after the removal of a breast tumour, suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood-brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the alpha2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood-brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver, suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain, the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood-brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interactions.

1,638 citations