scispace - formally typeset
Search or ask a question
Author

Makoto Matsumoto

Other affiliations: Nagasaki University, Osaka University, Kyushu University  ...read more
Bio: Makoto Matsumoto is an academic researcher from Otsuka Pharmaceutical. The author has contributed to research in topics: Delamanid & Silicone. The author has an hindex of 32, co-authored 91 publications receiving 16948 citations. Previous affiliations of Makoto Matsumoto include Nagasaki University & Osaka University.


Papers
More filters
Journal ArticleDOI
07 Dec 2000-Nature
TL;DR: It is shown that cellular response to CpG DNA is mediated by a Toll-like receptor, TLR9, and vertebrate immune systems appear to have evolved a specific Toll- like receptor that distinguishes bacterial DNA from self-DNA.
Abstract: DNA from bacteria has stimulatory effects on mammalian immune cells, which depend on the presence of unmethylated CpG dinucleotides in the bacterial DNA. In contrast, mammalian DNA has a low frequency of CpG dinucleotides, and these are mostly methylated; therefore, mammalian DNA does not have immuno-stimulatory activity. CpG DNA induces a strong T-helper-1-like inflammatory response. Accumulating evidence has revealed the therapeutic potential of CpG DNA as adjuvants for vaccination strategies for cancer, allergy and infectious diseases. Despite its promising clinical use, the molecular mechanism by which CpG DNA activates immune cells remains unclear. Here we show that cellular response to CpG DNA is mediated by a Toll-like receptor, TLR9. TLR9-deficient (TLR9-/-) mice did not show any response to CpG DNA, including proliferation of splenocytes, inflammatory cytokine production from macrophages and maturation of dendritic cells. TLR9-/- mice showed resistance to the lethal effect of CpG DNA without any elevation of serum pro-inflammatory cytokine levels. The in vivo CpG-DNA-mediated T-helper type-1 response was also abolished in TLR9-/- mice. Thus, vertebrate immune systems appear to have evolved a specific Toll-like receptor that distinguishes bacterial DNA from self-DNA.

6,188 citations

Journal ArticleDOI
01 Jul 1998-Immunity
TL;DR: It is demonstrated that MyD88 is a critical component in the signaling cascade that is mediated by IL-1 receptor as well as IL-18 receptor, and increases in interferon-gamma production and natural killer cell activity in response to IL- 18 are abrogated.

2,063 citations

Journal ArticleDOI
18 Apr 1996-Nature
TL;DR: It is concluded that Stat6 plays a central role in exerting IL-4-mediated biological responses, and production of Th2 cytokines from T cells as well as IgE and IgGl responses after nematode infection were profoundly reduced.
Abstract: Interleukin-4 (IL-4) is a pleiotropic lymphokine which plays an important role in the immune system. IL-4 activates two distinct signalling pathways through tyrosine phosphorylation of Stat6, a signal transducer and activator of transcription, and of a 170K protein called 4PS. To investigate the functional role of Stat6 in IL-4 signalling, we generated mice deficient in Stat6 by gene targeting. We report here that in the mutant mice, expression of CD23 and major histocompatibility complex (MHC) class II in resting B cells was not enhanced in response to IL-4. IL-4 induced B-cell proliferation costimulated by anti-IgM antibody was abolished. The T-cell proliferative response was also notably reduced. Furthermore, production of Th2 cytokines from T cells as well as IgE and IgG1 responses after nematode infection were profoundly reduced. These findings agreed with those obtained in IL-4 deficient mice or using antibodies to IL-4 and the IL-4 receptor. We conclude that Stat6 plays a central role in exerting IL-4 mediated biological responses.

1,526 citations

Journal ArticleDOI
TL;DR: It is demonstrated that Stat3 is essential for the early development of mouse embryos, and analysis of embryos at several gestation times revealed that stat3-deficient embryos showed a rapid degeneration between embryonic days 6.5 and 7.0.
Abstract: Signal transducer and activator of transcription (STAT) proteins have been shown to mediate biological actions in response to cytokines Stat3, a member of the STAT family, is activated by a variety of cytokines, including the interleukin 6 family of cytokines, leptin, granulocyte colony-stimulating factor, and epidermal growth factor To address the biological function of Stat3, we generated mice deficient in Stat3 by gene targeting No viable Stat3-deficient mice could be obtained from heterozygote intercross Analysis of embryos at several gestation times revealed that Stat3-deficient embryos showed a rapid degeneration between embryonic days 65 and 75, although they developed into the egg cylinder stage until embryonic day 60 These results demonstrate that Stat3 is essential for the early development of mouse embryos

1,355 citations

Journal ArticleDOI
TL;DR: A decrease in inflammatory cytokine production in tolerant macrophages well correlates with down-regulation of the surface TLR4 expression, which may explain one of the mechanisms for LPS tolerance.
Abstract: Monocytes/macrophages exposed to LPS show reduced responses to second stimulation with LPS, which is termed LPS tolerance. In this study, we investigated molecular mechanism of LPS tolerance in macrophages. Mouse peritoneal macrophages pre-exposed to LPS exhibited reduced production of inflammatory cytokines in a time- and dose-dependent manner. Activation of neither IL-1 receptor-associated kinase nor NF-κB was observed in macrophages that became tolerant by LPS pretreatment, indicating that the proximal event in Toll-like receptor 4 (TLR4)-MyD88-dependent signaling is affected in tolerant macrophages. Although TLR4 mRNA expression significantly decreased within a few hours of LPS pretreatment and returned to the original level at 24 h, the surface TLR4 expression began to decrease within 1 h, with a gradual decrease after that, and remained suppressed over 24 h. A decrease in inflammatory cytokine production in tolerant macrophages well correlates with down-regulation of the surface TLR4 expression, which may explain one of the mechanisms for LPS tolerance.

788 citations


Cited by
More filters
Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: Microbial recognition by Toll-like receptors helps to direct adaptive immune responses to antigens derived from microbial pathogens to distinguish infectious nonself from noninfectious self.
Abstract: ▪ Abstract The innate immune system is a universal and ancient form of host defense against infection. Innate immune recognition relies on a limited number of germline-encoded receptors. These receptors evolved to recognize conserved products of microbial metabolism produced by microbial pathogens, but not by the host. Recognition of these molecular structures allows the immune system to distinguish infectious nonself from noninfectious self. Toll-like receptors play a major role in pathogen recognition and initiation of inflammatory and immune responses. Stimulation of Toll-like receptors by microbial products leads to the activation of signaling pathways that result in the induction of antimicrobial genes and inflammatory cytokines. In addition, stimulation of Toll-like receptors triggers dendritic cell maturation and results in the induction of costimulatory molecules and increased antigen-presenting capacity. Thus, microbial recognition by Toll-like receptors helps to direct adaptive immune responses ...

8,041 citations

Journal ArticleDOI
TL;DR: Rapid progress that has recently improved the understanding of the molecular mechanisms that mediate TLR signalling is reviewed.
Abstract: One of the mechanisms by which the innate immune system senses the invasion of pathogenic microorganisms is through the Toll-like receptors (TLRs), which recognize specific molecular patterns that are present in microbial components. Stimulation of different TLRs induces distinct patterns of gene expression, which not only leads to the activation of innate immunity but also instructs the development of antigen-specific acquired immunity. Here, we review the rapid progress that has recently improved our understanding of the molecular mechanisms that mediate TLR signalling.

7,906 citations

Journal ArticleDOI
TL;DR: Recent advances that have been made by research into the role of TLR biology in host defense and disease are described.
Abstract: The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.

7,494 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The role of PRRs, their signaling pathways, and how they control inflammatory responses are discussed.

6,987 citations