scispace - formally typeset
Search or ask a question
Author

Makoto Mizutani

Other affiliations: Hiroshima University
Bio: Makoto Mizutani is an academic researcher from Nagoya University. The author has contributed to research in topics: Quail & Coturnix japonica. The author has an hindex of 22, co-authored 92 publications receiving 1703 citations. Previous affiliations of Makoto Mizutani include Hiroshima University.


Papers
More filters
Journal ArticleDOI
20 Mar 2008-Nature
TL;DR: Two waves of gene expression are identified in the quail MBH associated with the initiation of photoinduced secretion of luteinizing hormone and increased TSH in the pars tuberalis seems to trigger long-day photoinduced seasonal breeding.
Abstract: Molecular mechanisms regulating animal seasonal breeding in response to changing photoperiod are not well understood. Rapid induction of gene expression of thyroid-hormone-activating enzyme (type 2 deiodinase, DIO2) in the mediobasal hypothalamus (MBH) of the Japanese quail (Coturnix japonica) is the earliest event yet recorded in the photoperiodic signal transduction pathway. Here we show cascades of gene expression in the quail MBH associated with the initiation of photoinduced secretion of luteinizing hormone. We identified two waves of gene expression. The first was initiated about 14 h after dawn of the first long day and included increased thyrotrophin (TSH) beta-subunit expression in the pars tuberalis; the second occurred approximately 4 h later and included increased expression of DIO2. Intracerebroventricular (ICV) administration of TSH to short-day quail stimulated gonadal growth and expression of DIO2 which was shown to be mediated through a TSH receptor-cyclic AMP (cAMP) signalling pathway. Increased TSH in the pars tuberalis therefore seems to trigger long-day photoinduced seasonal breeding.

467 citations

Journal ArticleDOI
TL;DR: The microsatellite markers reported would serve as a useful resource base for genetic mapping in quail and comparative mapping in Phasianidae and cross-species amplification of all the markers was tested with chicken and guinea fowl DNA.
Abstract: In line with the Gifu University's initiative to map the Japanese quail genome, a total of 100 Japanese quail microsatellite markers isolated in our laboratory were evaluated in a population of 20 unrelated quails randomly sampled from a colony of wild quail origin. Ninety-eight markers were polymorphic with an average of 3.7 alleles per locus and a mean heterozygosity of 0.423. To determine the utility of these markers for comparative genome mapping in Phasianidae, cross-species amplification of all the markers was tested with chicken and guinea fowl DNA. Amplification products similar in size to the orthologous loci in quail were observed in 42 loci in chicken and 20 loci in guinea fowl. Of the cross-reactive markers, 57.1% in chicken and 55.0% in guinea fowl were polymorphic when tested in 20 birds from their respective populations. Five of 15 markers that could cross-amplify Japanese quail, chicken, and guinea fowl DNA were polymorphic in all three species. Amplification of orthologous loci was confirmed by sequencing 10 loci each from chicken and guinea fowl and comparing with them the corresponding quail sequence. The microsatellite markers reported would serve as a useful resource base for genetic mapping in quail and comparative mapping in Phasianidae.

87 citations

Journal ArticleDOI
TL;DR: A plasmid construct containing a beta-actin-lacZ hybrid gene is microinjected into the ovum at the single-cell stage, which is cultured in vitro for 85-90 hr using Systems Q1 and Q2 consecutively.

72 citations

Journal ArticleDOI
TL;DR: Peritoneal fibrosis (PF) is an important complication of peritoneal dialysis (PD) therapy that often occurs in association with high transport rate and ultrafiltration failure (UFF) as discussed by the authors.
Abstract: Peritoneal fibrosis (PF) is an important complication of peritoneal dialysis (PD) therapy that often occurs in association with peritoneal high transport rate and ultrafiltration failure (UFF). To ...

65 citations

Journal ArticleDOI
01 Feb 2008-Genetics
TL;DR: This is the first evidence that the ASIP gene, known to be involved in coat color variation in mammals, is functional and has a similar effect on plumage color in birds.
Abstract: The recessive black plumage mutation in the Japanese quail (Coturnix japonica) is controlled by an autosomal recessive gene (rb) and displays a blackish-brown phenotype in the recessive homozygous state (rb/rb). A similar black coat color phenotype in nonagouti mice is caused by an autosomal recessive mutation at the agouti locus. An allelism test showed that wild type and mutations for yellow, fawn-2, and recessive black in Japanese quail were multiple alleles (*N, *Y, *F2, and *RB) at the same locus Y and that the dominance relationship was Y*F2 > Y*Y > Y*N > Y*RB. A deletion of 8 bases was found in the ASIP gene in the Y*RB allele, causing a frameshift that changed the last six amino acids, including a cysteine residue, and removed the normal stop codon. Since the cysteine residues at the C terminus are important for disulphide bond formation and tertiary structure of the agouti signaling protein, the deletion is expected to cause a dysfunction of ASIP as an antagonist of α-MSH in the Y*RB allele. This is the first evidence that the ASIP gene, known to be involved in coat color variation in mammals, is functional and has a similar effect on plumage color in birds.

56 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, a test based on two conserved CHD (chromo-helicase-DNA-binding) genes that are located on the avian sex chromosomes of all birds, with the possible exception of the ratites (ostriches, etc.).

2,554 citations

Journal ArticleDOI
TL;DR: A review of surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface sciences studies with the broader field of materials science of tin oxide as discussed by the authors.

2,232 citations

Journal ArticleDOI
25 Mar 2010-Nature
TL;DR: The authors used massively parallel sequencing to identify selective sweeps of favorable alleles and candidate mutations that have had a prominent role in the domestication of domestic chickens and their subsequent specialization into broiler (meat-producing) and layer (egg-consuming) chickens.
Abstract: Domestic animals are excellent models for genetic studies of phenotypic evolution They have evolved genetic adaptations to a new environment, the farm, and have been subjected to strong human-driven selection leading to remarkable phenotypic changes in morphology, physiology and behaviour Identifying the genetic changes underlying these developments provides new insight into general mechanisms by which genetic variation shapes phenotypic diversity Here we describe the use of massively parallel sequencing to identify selective sweeps of favourable alleles and candidate mutations that have had a prominent role in the domestication of chickens (Gallus gallus domesticus) and their subsequent specialization into broiler (meat-producing) and layer (egg-producing) chickens We have generated 445-fold coverage of the chicken genome using pools of genomic DNA representing eight different populations of domestic chickens as well as red jungle fowl (Gallus gallus), the major wild ancestor We report more than 7,000,000 single nucleotide polymorphisms, almost 1,300 deletions and a number of putative selective sweeps One of the most striking selective sweeps found in all domestic chickens occurred at the locus for thyroid stimulating hormone receptor (TSHR), which has a pivotal role in metabolic regulation and photoperiod control of reproduction in vertebrates Several of the selective sweeps detected in broilers overlapped genes associated with growth, appetite and metabolic regulation We found little evidence that selection for loss-of-function mutations had a prominent role in chicken domestication, but we detected two deletions in coding sequences that we suggest are functionally important This study has direct application to animal breeding and enhances the importance of the domestic chicken as a model organism for biomedical research

943 citations

Journal ArticleDOI
TL;DR: It seems clear that deiodinases play a much broader role than once thought, with great ramifications for the control of thyroid hormone signaling during vertebrate development and metamorphosis, as well as injury response, tissue repair, hypothalamic function, and energy homeostasis in adults.
Abstract: The iodothyronine deiodinases initiate or terminate thyroid hormone action and therefore are critical for the biological effects mediated by thyroid hormone. Over the years, research has focused on their role in preserving serum levels of the biologically active molecule T3 during iodine deficiency. More recently, a fascinating new role of these enzymes has been unveiled. The activating deiodinase (D2) and the inactivating deiodinase (D3) can locally increase or decrease thyroid hormone signaling in a tissue- and temporal-specific fashion, independent of changes in thyroid hormone serum concentrations. This mechanism is particularly relevant because deiodinase expression can be modulated by a wide variety of endogenous signaling molecules such as sonic hedgehog, nuclear factor-κB, growth factors, bile acids, hypoxia-inducible factor-1α, as well as a growing number of xenobiotic substances. In light of these findings, it seems clear that deiodinases play a much broader role than once thought, with great ramifications for the control of thyroid hormone signaling during vertebrate development and metamorphosis, as well as injury response, tissue repair, hypothalamic function, and energy homeostasis in adults.

715 citations

Journal ArticleDOI
TL;DR: This work has summarized genetic diversity within and across breeds and a reconstruction of the history of breeds and ancestral populations for cattle, yak, water buffalo, sheep, goats, camelids, pigs, horses, and chickens.
Abstract: Domestication of livestock species and a long history of migrations, selection and adaptation have created an enormous variety of breeds. Conservation of these genetic resources relies on demographic characterization, recording of production environments and effective data management. In addition, molecular genetic studies allow a comparison of genetic diversity within and across breeds and a reconstruction of the history of breeds and ancestral populations. This has been summarized for cattle, yak, water buffalo, sheep, goats, camelids, pigs, horses, and chickens. Further progress is expected to benefit from advances in molecular technology.

490 citations