scispace - formally typeset
Search or ask a question
Author

Mala B. Rao

Bio: Mala B. Rao is an academic researcher from National Chemical Laboratory. The author has contributed to research in topics: Proteases & Penicillium funiculosum. The author has an hindex of 7, co-authored 9 publications receiving 2755 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes and deciphering these secrets would enable to exploit proteases for their applications in biotechnology.
Abstract: Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology.

2,159 citations

Journal ArticleDOI
TL;DR: Manipulation of the GI gene by site-directed mutagenesis holds promise that a GI suitable for biotechnological applications will be produced in the foreseeable future.

491 citations

Journal ArticleDOI
TL;DR: Optimization of fermentation conditions in shake flasks and scale up of production to 100 L in fermentors and preservation and stabilization studies showed that glycerol conferred considerable stabilization at room temperature while ammonium sulphate precipitated enzyme at 0.9 saturation was best with stability up to 2 years even at roomTemperature.

121 citations

Journal ArticleDOI
TL;DR: The effect of a wide variety of compounds was studied to enhance the thermal stability of the protease by modification of its microenvironment and addition of Ca2+ or glycine was effective in increasing the half-life of the enzyme three-fold.

97 citations

Journal ArticleDOI
TL;DR: Both endoglucanase and xylan enzyme activity were induced by CMC, whereas xylan induced only xylanase activity, and the effect of protease on induction of cellulase activity is discussed.
Abstract: The regulation of endoglucanase synthesis inPenicillium funiculosum is investigated using a method based on the viscosity lowering effect on carboxy methyl cellulose (CMC) by endoglucanase Cellobiose (1 mg/L) causes induction, whereas glucose (5 g/L) does not repress the enzyme formation Lactose (5 g/L) has no effect on the synthesis of cellulase Avicel and cellulose powder (CP) are the best inducers of cellulase and xylanase activity Both endoglucanase and xylanase activity were induced by CMC, whereas xylan induced only xylanase activity The effect of protease on induction of cellulase activity is discussed

23 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes and deciphering these secrets would enable to exploit proteases for their applications in biotechnology.
Abstract: Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology.

2,159 citations

Journal ArticleDOI
TL;DR: The types and sources of proteases, protease yield-improvement methods, the use of new methods for developing novel proteases and applications of alkaline proteases in industrial sectors are discussed, with an overview on the use in the detergent industry.
Abstract: Proteolytic enzymes are ubiquitous in occurrence, being found in all living organisms, and are essential for cell growth and differentiation. The extracellular proteases are of commercial value and find multiple applications in various industrial sectors. Although there are many microbial sources available for producing proteases, only a few are recognized as commercial producers. A good number of bacterial alkaline proteases are commercially available, such as subtilisin Carlsberg, subtilisin BPN′ and Savinase, with their major application as detergent enzymes. However, mutations have led to newer protease preparations with improved catalytic efficiency and better stability towards temperature, oxidizing agents and changing wash conditions. Many newer preparations, such as Durazym, Maxapem and Purafect, have been produced, using techniques of site-directed mutagenesis and/or random mutagenesis. Directed evolution has also paved the way to a great variety of subtilisin variants with better specificities and stability. Molecular imprinting through conditional lyophilization is coming up to match molecular approaches in protein engineering. There are many possibilities for modifying biocatalysts through molecular approaches. However, the search for microbial sources of novel alkaline proteases in natural diversity through the "metagenome" approach is targeting a hitherto undiscovered wealth of molecular diversity. This fascinating development will allow the biotechnological exploitation of uncultured microorganisms, which by far outnumber the species accessible by cultivation, regardless of the habitat. In this review, we discuss the types and sources of proteases, protease yield-improvement methods, the use of new methods for developing novel proteases and applications of alkaline proteases in industrial sectors, with an overview on the use of alkaline proteases in the detergent industry.

1,573 citations

Journal ArticleDOI
TL;DR: Several selected pharmaceutical and biomedical applications are presented, in which chitin and chitosan are recognized as new biomaterials taking advantage of their biocompatibility and biodegradability.
Abstract: This review describes the most common methods for recovery of chitin from marine organisms. In depth, both enzymatic and chemical treatments for the step of deproteinization are compared, as well as different conditions for demineralization. The conditions of chitosan preparation are also discussed, since they significantly impact the synthesis of chitosan with varying degree of acetylation (DA) and molecular weight (MW). In addition, the main characterization techniques applied for chitin and chitosan are recalled, pointing out the role of their solubility in relation with the chemical structure (mainly the acetyl group distribution along the backbone). Biological activities are also presented, such as: antibacterial, antifungal, antitumor and antioxidant. Interestingly, the relationship between chemical structure and biological activity is demonstrated for chitosan molecules with different DA and MW and homogeneous distribution of acetyl groups for the first time. In the end, several selected pharmaceutical and biomedical applications are presented, in which chitin and chitosan are recognized as new biomaterials taking advantage of their biocompatibility and biodegradability.

1,554 citations

Journal ArticleDOI
TL;DR: The alpha-amylase family of glycosyl hydrolases as discussed by the authors is one of the most common types of enzymes used in industrial applications and has a (beta/alpha) 8-barrel structure with conserved amino acid residues.

1,136 citations

Journal ArticleDOI
TL;DR: Developments from the understanding of the complex protein translocation machinery of Gram-positive bacteria should allow the resolution of current secretion challenges and make Bacillus species preeminent hosts for heterologous protein production.
Abstract: Bacillus species continue to be dominant bacterial workhorses in microbial fermentations. Bacillus subtilis (natto) is the key microbial participant in the ongoing production of the soya-based trad...

1,100 citations