scispace - formally typeset
Search or ask a question
Author

Malcolm A. Ferguson-Smith

Bio: Malcolm A. Ferguson-Smith is an academic researcher from University of Cambridge. The author has contributed to research in topics: Karyotype & Chromosome. The author has an hindex of 79, co-authored 458 publications receiving 25179 citations. Previous affiliations of Malcolm A. Ferguson-Smith include Santa Clara University & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
26 Jul 1996-Science
TL;DR: Whole-genome scanning by spectral karyotyping allowed instantaneous visualization of defined emission spectra for each human chromosome after fluorescence in situ hybridization, and all human chromosomes were simultaneously identified.
Abstract: The simultaneous and unequivocal discernment of all human chromosomes in different colors would be of significant clinical and biologic importance. Whole-genome scanning by spectral karyotyping allowed instantaneous visualization of defined emission spectra for each human chromosome after fluorescence in situ hybridization. By means of computer separation (classification) of spectra, spectrally overlapping chromosome-specific DNA probes could be resolved, and all human chromosomes were simultaneously identified.

1,806 citations

Journal ArticleDOI
TL;DR: A comprehensive screening protocol for affected patients and at-risk relatives is presented, based on detailed analysis of age at onset data for each of the major complications of von Hippel-Lindan disease.
Abstract: The clinical features, age at onset and survival of 152 patients with von Hippel-Lindau disease were studied. Mean age at onset was 26.3 years and 97 per cent of patients had presented by aged 60 years. Retinal angioma was the first manifestation in 65 patients (43 per cent), followed by cerebellar haemangioblastoma (n = 60, 39 per cent) and renal cell carcinoma (n = 15, 10 per cent). Overall, 89 patients (59 per cent) developed a cerebellar haemangioblastoma, 89 (59 per cent) a retinal angioma, 43 (28 per cent) renal cell carcinoma, 20 (13 per cent) spinal haemangioblastoma and 11 (7 per cent) a phaeochromocytoma. Renal, pancreatic and epididymal cysts were frequent findings but their exact incidence was not accurately assessed. Mean age at diagnosis of renal cell carcinoma (44.0 +/- 10.9 years) was significantly older than that for cerebellar haemangioblastoma (29.0 +/- 10.0 years) and retinal angioma (25.4 +/- 12.7 years). The probability of a patient with von Hippel-Lindan disease developing a cerebellar haemangioblastoma, retinal angioma or renal cell carcinoma by age 60 years was 0.84, 0.7 and 0.69, respectively. A comprehensive screening protocol for affected patients and at-risk relatives is presented, based on detailed analysis of age at onset data for each of the major complications. Median actuarial survival was 49 years, with renal cell carcinoma the leading cause of death.

800 citations

Journal ArticleDOI
01 Nov 1983-Nature
TL;DR: In this article, the translocation of the human cellular homologue (c-ab1) of the transforming sequence of Abelson murine leukaemia virus (A-MuLV) from chromosome 9 to the Philadelphia chromosome (Ph1) in chronic myelocytic leukemiaemia (CML) was investigated.
Abstract: The localization of cellular oncogenes near the break points of tumour-specific chromosomal aberrations suggests an involvement of these genes in the generation of neoplasms. Recently, we demonstrated the translocation of the human cellular homologue (c-ab1) of the transforming sequence of Abelson murine leukaemia virus (A-MuLV) from chromosome 9 to the Philadelphia chromosome (Ph1) in chronic myelocytic leukaemia (CML). In an attempt to investigate the significance of this translocation in the pathogenesis of CML, we have now studied two CML patients with complex translocations, t(9; 11; 22) and t(1; 9; 22), and two CML Ph1-negative patients with apparently normal karyotypes. In addition to using blot hybridization with human c-ab1 probes and DNA from rodent: CML cell hybrids as before, we have used in situ hybridization of these probes directly to metaphase chromosomes of CML patients. These studies show that the c-ab1 gene is translocated in Ph1-positive but not in Ph1-negative CML patients. CML without the Ph1 chromosome seems to be a distinct entity with a different origin, and this view is supported by clinical observations including correlations which reveal a poorer prognosis.

691 citations

Journal ArticleDOI
Wesley C. Warren1, LaDeana W. Hillier1, Jennifer A. Marshall Graves2, Ewan Birney, Chris P. Ponting3, Frank Grützner4, Katherine Belov5, Webb Miller6, Laura Clarke7, Asif T. Chinwalla1, Shiaw Pyng Yang1, Andreas Heger3, Devin P. Locke1, Pat Miethke2, Paul D. Waters2, Frédéric Veyrunes2, Frédéric Veyrunes8, Lucinda Fulton1, Bob Fulton1, Tina Graves1, John W. Wallis1, Xose S. Puente9, Carlos López-Otín9, Gonzalo R. Ordóñez9, Evan E. Eichler10, Lin Chen10, Ze Cheng10, Janine E. Deakin2, Amber E. Alsop2, Katherine Thompson2, Patrick J. Kirby2, Anthony T. Papenfuss11, Matthew Wakefield11, Tsviya Olender12, Doron Lancet12, Gavin A. Huttley2, Arian F.A. Smit13, Andrew J Pask14, Peter Temple-Smith15, Peter Temple-Smith14, Mark A. Batzer16, Jerilyn A. Walker16, Miriam K. Konkel16, Robert S. Harris6, Camilla M. Whittington5, Emily S. W. Wong5, Neil J. Gemmell17, Emmanuel Buschiazzo17, Iris M. Vargas Jentzsch17, Angelika Merkel17, Juergen Schmitz18, Anja Zemann18, Gennady Churakov18, Jan Ole Kriegs18, Juergen Brosius18, Elizabeth P. Murchison19, Ravi Sachidanandam19, Carly Smith19, Gregory J. Hannon19, Enkhjargal Tsend-Ayush4, Daniel McMillan2, Rosalind Attenborough2, Willem Rens8, Malcolm A. Ferguson-Smith8, Christophe Lefevre14, Christophe Lefevre20, Julie A. Sharp14, Kevin R. Nicholas14, David A. Ray21, Michael Kube, Richard Reinhardt, Thomas H. Pringle, James Taylor22, Russell C. Jones, Brett Nixon, Jean Louis Dacheux23, Hitoshi Niwa, Yoko Sekita, Xiaoqiu Huang24, Alexander Stark25, Pouya Kheradpour25, Manolis Kellis25, Paul Flicek, Yuan Chen, Caleb Webber3, Ross C. Hardison, Joanne O. Nelson1, Kym Hallsworth-Pepin1, Kim D. Delehaunty1, Chris Markovic1, Patrick Minx1, Yucheng Feng1, Colin Kremitzki1, Makedonka Mitreva1, Jarret Glasscock1, Todd Wylie1, Patricia Wohldmann1, Prathapan Thiru1, Michael N. Nhan1, Craig Pohl1, Scott M. Smith1, Shunfeng Hou1, Marilyn B. Renfree14, Elaine R. Mardis1, Richard K. Wilson1 
08 May 2008-Nature
TL;DR: It is found that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypUS biology.
Abstract: We present a draft genome sequence of the platypus, Ornithorhynchus anatinus This monotreme exhibits a fascinating combination of reptilian and mammalian characters For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles Analysis of the first monotreme genome aligned these features with genetic innovations We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation

653 citations

Journal ArticleDOI
TL;DR: This study shows that flow sorting of aberrant chromosomes and chromosome painting can be used as a rapid aid to cytogenetic analysis, particularly in cases of difficult karyotypes, such as tumours.
Abstract: A novel polymerase chain reaction (PCR) technique has been combined with chromosome flow sorting to characterise two lymphoblastoid cell lines and one medullary thyroid carcinoma cell line carrying translocations close to the locus for multiple endocrine neoplasia type 2A (MEN 2A). Five hundred copies of the derivative chromosome(s) were flow sorted from each cell line and amplified by degenerate oligonucleotide-primed-polymerase chain reaction (DOP-PCR). This generated pools of DNA sequences corresponding to the abnormal chromosomes, which were then used as probes in fluorescence in situ hybridisation (FISH) experiments on normal metaphase cells. The resultant chromosome paints revealed the portions of the normal chromosomes related to those involved in the translocations. By this technique, translocation breakpoints in bands p15, q11.2, and q21 of chromosome 10 were defined in the above cell lines, in two cases refining previous cytogenetic data. This study shows that flow sorting of aberrant chromosomes and chromosome painting can be used as a rapid aid to cytogenetic analysis, particularly in cases of difficult karyotypes, such as tumours. Furthermore, the DOP-PCR technique described here will have applications to other areas of genome analysis, such as cloning of new markers; its design will allow a general and representative amplification to occur from any starting DNA in any species.

584 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations

Journal ArticleDOI
TL;DR: This review looks at current methods for preparing QD bioconjugates as well as presenting an overview of applications, and concludes that the potential of QDs in biology has just begun to be realized and new avenues will arise as the ability to manipulate these materials improves.
Abstract: One of the fastest moving and most exciting interfaces of nanotechnology is the use of quantum dots (QDs) in biology. The unique optical properties of QDs make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations, in which traditional fluorescent labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple signals. The ability to make QDs water soluble and target them to specific biomolecules has led to promising applications in cellular labelling, deep-tissue imaging, assay labelling and as efficient fluorescence resonance energy transfer donors. Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible bioconjugation techniques. In this review, we look at current methods for preparing QD bioconjugates as well as presenting an overview of applications. The potential of QDs in biology has just begun to be realized and new avenues will arise as our ability to manipulate these materials improves.

5,875 citations