scispace - formally typeset
Search or ask a question
Author

Malcolm Davidson

Bio: Malcolm Davidson is an academic researcher from European Space Agency. The author has contributed to research in topics: Synthetic aperture radar & Radar. The author has an hindex of 25, co-authored 132 publications receiving 4322 citations. Previous affiliations of Malcolm Davidson include European Space Research and Technology Centre.


Papers
More filters
Journal ArticleDOI
TL;DR: The unique data availability performance of the Sentinel-1 routine operations makes the mission particularly suitable for emergency response support, marine surveillance, ice monitoring and interferometric applications such as detection of subsidence and landslides.

1,260 citations

Journal ArticleDOI
TL;DR: In this article, the authors used new data from the European Space Agency CryoSat-2 (CS-2) mission, validated with in situ data, to generate estimates of ice volume for the winters of 2010/11 and 2011/12.
Abstract: [1] Satellite records show a decline in ice extent over more than three decades, with a record minimum in September 2012. Results from the Pan-Arctic Ice-Ocean Modelling and Assimilation system (PIOMAS) suggest that the decline in extent has been accompanied by a decline in volume, but this has not been confirmed by data. Using new data from the European Space Agency CryoSat-2 (CS-2) mission, validated with in situ data, we generate estimates of ice volume for the winters of 2010/11 and 2011/12. We compare these data with current estimates from PIOMAS and earlier (2003–8) estimates from the National Aeronautics and Space Administration ICESat mission. Between the ICESat and CryoSat-2 periods, the autumn volume declined by 4291 km3 and the winter volume by 1479 km3. This exceeds the decline in ice volume in the central Arctic from the PIOMAS model of 2644 km3 in the autumn, but is less than the 2091 km3 in winter, between the two time periods.

664 citations

Journal ArticleDOI
TL;DR: In this article, a P-band polarimetric SAR with interferometric capability is used to measure the magnitude and distribution of forest biomass globally to improve resource assessment, carbon accounting and carbon models, and to monitor and quantify changes in terrestrial forest biomass.

592 citations

Journal ArticleDOI
TL;DR: The authors address the issue of soil roughness characterization in the case of agricultural fields having different tillage (roughness) states by making use of an extensive multisite database of surface profiles collected using a novel laser profiler capable of recording profiles up to 25 m long.
Abstract: The surface roughness parameters commonly used as inputs to electromagnetic surface scattering models (SPM, PO, GO, and IEM) are the root mean square (RMS) height s, and autocorrelation length l. However, soil moisture retrieval studies based on these models have yielded inconsistent results, not so much because of the failure of the models themselves, but because of the complexity of natural surfaces and the difficulty in estimating appropriate input roughness parameters. In this paper, the authors address the issue of soil roughness characterization in the case of agricultural fields having different tillage (roughness) states by making use of an extensive multisite database of surface profiles collected using a novel laser profiler capable of recording profiles up to 25 m long. Using this dataset, the range of RMS height and correlation values associated with each agricultural roughness state is estimated, and the dependence of these estimates on profile length is investigated. The results show that at spatial scales equivalent to those of the SAR resolution cell, agricultural surface roughness characteristics are well described by the superposition of a single scale process related to the tillage state with a multiscale random fractal process related to field topography.

271 citations

Journal ArticleDOI
TL;DR: Results indicate that for crops relatively insensitive to volume scattering in the vegetation canopy, mv can be retrieved during the whole growing season, and it is shown that low incidence angles and HH polarization are generally better suited to mv retrieval than VV polarization and higher incidence angles.
Abstract: This paper investigates the potential of multi-temporal C- and L-band SAR data, acquired within a short revisiting time (1-2 weeks), to map temporal changes of surface soil moisture content (mv) underneath agricultural crops. The analysed data consist of a new ground and SAR data set acquired on a weekly basis from late April to early August 2006 over the DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network) agricultural site (Northern Germany) during the European Space Agency 2006 AgriSAR campaign. The paper firstly investigates the main scattering mechanisms characterizing the interaction between the SAR signal and crops, such as winter wheat and rape. Then, the relationship between backscatter and soil moisture content temporal changes as a function of different SAR bands and polarizations is studied. Observations indicate that rationing of the multi-temporal radar backscatter can be a simple and effective way to decouple the effect of vegetation and surface roughness from the effect of soil moisture changes, when volume scattering is not dominant. The study also assesses to which extent changes in the incidence angle between subsequent radar acquisitions may affect the radar sensitivity to soil moisture content. Finally, an algorithm based on the change detection technique retrieving superficial soil moisture content is proposed and assessed both on simulated and experimental data. Results indicate that for crops relatively insensitive to volume scattering in the vegetation canopy (as for instance winter wheat at C-band or winter rape and winter wheat at L-band), mv can be retrieved during the whole growing season, with accuracies ranging between 5% and 6% [m3/m3]. We also show that low incidence angles (e.g., 20-35 ) and HH polarization are generally better suited to mv retrieval than VV polarization and higher incidence angles.

228 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
TL;DR: An overview of the GMES Sentinel-2 mission including a technical system concept overview, image quality, Level 1 data processing and operational applications is provided.

2,517 citations

Journal ArticleDOI
TL;DR: This work analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types, and found a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height.
Abstract: Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

1,750 citations

Journal ArticleDOI
TL;DR: This paper provides first a tutorial about the SAR principles and theory, followed by an overview of established techniques like polarimetry, interferometry and differential interferometric as well as of emerging techniques (e.g., polarimetric SARinterferometry, tomography and holographic tomography).
Abstract: Synthetic Aperture Radar (SAR) has been widely used for Earth remote sensing for more than 30 years. It provides high-resolution, day-and-night and weather-independent images for a multitude of applications ranging from geoscience and climate change research, environmental and Earth system monitoring, 2-D and 3-D mapping, change detection, 4-D mapping (space and time), security-related applications up to planetary exploration. With the advances in radar technology and geo/bio-physical parameter inversion modeling in the 90s, using data from several airborne and spaceborne systems, a paradigm shift occurred from the development driven by the technology push to the user demand pull. Today, more than 15 spaceborne SAR systems are being operated for innumerous applications. This paper provides first a tutorial about the SAR principles and theory, followed by an overview of established techniques like polarimetry, interferometry and differential interferometry as well as of emerging techniques (e.g., polarimetric SAR interferometry, tomography and holographic tomography). Several application examples including the associated parameter inversion modeling are provided for each case. The paper also describes innovative technologies and concepts like digital beamforming, Multiple-Input Multiple-Output (MIMO) and bi- and multi-static configurations which are suitable means to fulfill the increasing user requirements. The paper concludes with a vision for SAR remote sensing.

1,614 citations