scispace - formally typeset
Search or ask a question
Author

Malcolm F. G. Stevens

Bio: Malcolm F. G. Stevens is an academic researcher from University of Nottingham. The author has contributed to research in topics: Temozolomide & Benzothiazole. The author has an hindex of 57, co-authored 315 publications receiving 12291 citations. Previous affiliations of Malcolm F. G. Stevens include Keele University & Hauptman-Woodward Medical Research Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: This poster presents a poster presented at the 2016 American Academy of Medical Oncology Congress on Wednesday, 3 March 2016 calling for awareness of the importance of informed consent in the selection of patients for cancer treatment.

747 citations

Journal ArticleDOI
TL;DR: Several small molecule inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1), a critical BER protein are yielding promising results clinically, both in combination with TMZ and as single agent chemotherapy in patients whose tumours possess homologous recombination DNA repair defects.
Abstract: Glioblastoma multiforme is the most common aggressive adult primary tumour of the central nervous system. Treatment includes surgery, radiotherapy and adjuvant temozolomide (TMZ) chemotherapy. TMZ is an alkylating agent prodrug, delivering a methyl group to purine bases of DNA (O6-guanine; N7-guanine and N3-adenine). The primary cytotoxic lesion, O6-methylguanine (O6-MeG) can be removed by methylguanine methyltransferase (MGMT; direct repair) in tumours expressing this protein, or tolerated in mismatch repair-deficient (MMR-) tumours. Thus MGMT or MMR deficiency confers resistance to TMZ. Inherent- and acquired resistance to TMZ present major obstacles to successful treatment. Strategies devised to thwart resistance and enhance response to TMZ, including inhibition of DNA repair mechanisms which contribute to TMZ resistance, are under clinical evaluation. Depletion of MGMT prior to alkylating agent chemotherapy prevents O6-MeG repair; thus, MGMT pseudosubstrates O6-benzylguanine and lomeguatrib are able to sensitise tumours to TMZ. Disruption of base excision repair (BER) results in persistence of potentially lethal N7- and N3- purine lesions contributing significantly to TMZ cytoxicity particularly when O6-MeG adducts are repaired or tolerated. Several small molecule inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1), a critical BER protein are yielding promising results clinically, both in combination with TMZ and as single agent chemotherapy in patients whose tumours possess homologous recombination DNA repair defects. Another validated, but as yet preclinical protein target, mandatory to BER is abasic (AP) endonuclease-1 (APE-1); in preclinical tests, APE-1 inhibition potentiates TMZ activity. An alternative strategy is synthesis of a molecule, evoking an irrepairable cytotoxic O6-G lesion. Preliminary efforts to achieve this goal are described.

581 citations

Journal ArticleDOI
TL;DR: In the extended Phase I trial temozolomide only occasionally exhibited the unpredictable myelosuppression seen with mitozolmide, which is easy to use clinically and generally well tolerated.
Abstract: Temozolomide (CCRG 81045: MB 17%) out of 23 patients with melanoma and in one patient with mycosis fungoides (CR lasting 7 months). Two patients with recurrent high grade gliomas have also had partial responses. Temozolomide is easy to use clinically and generally well tolerated. In the extended Phase I trial temozolomide only occasionally exhibited the unpredictable myelosuppression seen with mitozolomide.

491 citations

Journal ArticleDOI
TL;DR: Mechanistically, this new series of agents contrasts with the previously reported 2-(4-aminophenyl)benzothiazoles; compound 8n is not reliant on induction of CYP1A1 expression for antitumor activity.
Abstract: A series of new 2-phenylbenzothiazoles has been synthesized on the basis of the discovery of the potent and selective in vitro antitumor properties of 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (8n; GW 610, NSC 721648). Synthesis of analogues substituted in the benzothiazole ring was achieved via the reaction of o-aminothiophenol disulfides with substituted benzaldehydes under reducing conditions. Compounds were evaluated in vitro in four human cancer cell lines, and compound 8n was found to possess exquisitely potent antiproliferative activity (GI(50) < 0.1 nM for MCF-7 and MDA 468). Potent and selective activity was also observed in the NCI 60 human cancer cell line panel. Structure-activity relationships established that the compound 8n stands on a pinnacle of potent activity, with most structural variations having a deactivating in vitro effect. Mechanistically, this new series of agents contrasts with the previously reported 2-(4-aminophenyl)benzothiazoles; compound 8n is not reliant on induction of CYP1A1 expression for antitumor activity.

412 citations

Journal Article
TL;DR: The 3-methyl analogue, 8-carbamoyl-3-methylimidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (CCRG 81045), was investigated further and found to possess good activity, when administered i.p. or p.o. to mice bearing the L1210 leukemia.
Abstract: A number of 3-alkyl analogues of the experimental antitumor drug mitozolomide [8-carbamoyl-3-(2-chloroethyl)imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one] have been screened against murine tumors in vivo. Only the compounds with a 3-methyl- or 3-bromoethyl group possessed significant antitumor activity against the TLX5 lymphoma. The 3-methyl analogue, 8-carbamoyl-3-methylimidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (CCRG 81045), was investigated further and found to possess good activity, when administered i.p., against the L1210 and P388 leukemias, the M5076 reticulum cell sarcoma, B16 melanoma, and ADJ/PC6A plasmacytoma. The drug was also active when administered p.o. to mice bearing the L1210 leukemia. A daily for 5 days schedule of 100 mg/kg CCRG 81045 produced increases of survival time of treated animals compared to controls of 176 and >235% against the P388 and L1210 leukemias, respectively. In the female C57BL × DBA/2 F1 mouse the 10% lethal dose was 125 mg/kg daily for 5 days. CCRG 81045 was found to undergo mild alkaline hydrolysis and ring fission to form the linear triazene 5-(3-methyltriazen-1-yl)imidazole-4-carboxamide, which is the putative metabolite formed upon metabolic activation of the antitumor drug dacarbazine [5-(3,3-dimethyltriazen-1-yl)imidazole-4-carboxamide]. The half-life of CCRG 81045 at 37°C in 0.2 m phosphate buffer (pH 7.4) was 1.24 h, whereas that of 5-(3-methyltriazen-1-yl)imidazole-4-carbox-amide at 25°C was reported to be 8 min (F. H. Shealy and C. A. Krauth, J. Med. Chem., 9: 34–37, 1966). The half-life of CCRG 81045 in human plasma in vitro at 37°C was 0.42 h. Pharmacokinetic experiments conducted in BALB/c mice produced plasma profiles of CCRG 81045, administered i.p. or p.o., which showed a rapid absorption phase, elimination half-lives of 1.13 h (i.p.) and 1.29 h (p.o.), and a bioavailability of 0.98.

404 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity.
Abstract: methods Patients with newly diagnosed, histologically confirmed glioblastoma were randomly assigned to receive radiotherapy alone (fractionated focal irradiation in daily fractions of 2 Gy given 5 days per week for 6 weeks, for a total of 60 Gy) or radiotherapy plus continuous daily temozolomide (75 mg per square meter of body-surface area per day, 7 days per week from the first to the last day of radiotherapy), followed by six cycles of adjuvant temozolomide (150 to 200 mg per square meter for 5 days during each 28-day cycle). The primary end point was overall survival. results A total of 573 patients from 85 centers underwent randomization. The median age was 56 years, and 84 percent of patients had undergone debulking surgery. At a median follow-up of 28 months, the median survival was 14.6 months with radiotherapy plus temozolomide and 12.1 months with radiotherapy alone. The unadjusted hazard ratio for death in the radiotherapy-plus-temozolomide group was 0.63 (95 percent confidence interval, 0.52 to 0.75; P<0.001 by the log-rank test). The two-year survival rate was 26.5 percent with radiotherapy plus temozolomide and 10.4 percent with radiotherapy alone. Concomitant treatment with radiotherapy plus temozolomide resulted in grade 3 or 4 hematologic toxic effects in 7 percent of patients.

16,653 citations

Journal ArticleDOI
TL;DR: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up, and a benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years.
Abstract: BACKGROUND: In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. METHODS: Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. FINDINGS: Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. INTERPRETATION: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. FUNDING: EORTC, NCIC, Nelia and Amadeo Barletta Foundation, Schering-Plough.

6,161 citations

Journal ArticleDOI
TL;DR: Privileged substructures are believed to achieve this through the mimicry of common protein surface elements that are responsible for binding, such as β- and gamma;-turns.
Abstract: Privileged substructures are of potentially great importance in medicinal chemistry. These scaffolds are characterized by their ability to promiscuously bind to a multitude of receptors through a variety of favorable characteristics. This may include presentation of their substituents in a spatially defined manner and perhaps also the ability to directly bind to the receptor itself, as well as exhibiting promising characteristics to aid bioavailability of the overall molecule. It is believed that some privileged substructures achieve this through the mimicry of common protein surface elements that are responsible for binding, such as β- and gamma;-turns. As a result, these structures represent a promising means by which new lead compounds may be identified.

2,620 citations

Journal ArticleDOI
TL;DR: In this Review, the fundamental characteristics of azide chemistry and current developments are presented and the focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles.
Abstract: Since the discovery of organic azides by Peter Griess more than 140 years ago, numerous syntheses of these energy-rich molecules have been developed. In more recent times in particular, completely new perspectives have been developed for their use in peptide chemistry, combinatorial chemistry, and heterocyclic synthesis. Organic azides have assumed an important position at the interface between chemistry, biology, medicine, and materials science. In this Review, the fundamental characteristics of azide chemistry and current developments are presented. The focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles. Further reactions such as the aza-Wittig reaction, the Sundberg rearrangement, the Staudinger ligation, the Boyer and Boyer-Aube rearrangements, the Curtius rearrangement, the Schmidt rearrangement, and the Hemetsberger rearrangement bear witness to the versatility of modern azide chemistry.

1,766 citations