scispace - formally typeset
Search or ask a question
Author

Malcolm G. Parker

Bio: Malcolm G. Parker is an academic researcher from Brunel University London. The author has contributed to research in topics: Diisobutyl phthalate & Diethyl phthalate. The author has an hindex of 1, co-authored 1 publications receiving 726 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A large number of phthalate esters were screened for estrogenic activity using a recombinant yeast screen and a selection of these was also tested for mitogenic effect on estrogen-responsive human breast cancer cells.
Abstract: A large number of phthalate esters were screened for estrogenic activity using a recombinant yeast screen. a selection of these was also tested for mitogenic effect on estrogen-responsive human breast cancer cells. A small number of the commercially available phthalates tested showed extremely weak estrogenic activity. The relative potencies of these descended in the order butyl benzyl phthalate (BBP) > dibutyl phthalate (DBP) > diisobutyl phthalate (DIBP) > diethyl phthalate (DEP) > diisiononyl phthalate (DINP). Potencies ranged from approximately 1 x 10(6) to 5 x 10(7) times less than 17beta-estradiol. The phthalates that were estrogenic in the yeast screen were also mitogenic on the human breast cancer cells. Di(2-ethylhexyl) phthalate (DEHP) showed no estrogenic activity in these in vitro assays. A number of metabolites were tested, including mono-butyl phthalate, mono-benzyl phthalate, mono-ethylhexyl phthalate, mon-n-octyl phthalate; all were wound to be inactive. One of the phthalates, ditridecyl phthalate (DTDP), produced inconsistent results; one sample was weakly estrogenic, whereas another, obtained from a different source, was inactive. analysis by gel chromatography-mass spectometry showed that the preparation exhibiting estrogenic activity contained 0.5% of the ortho-isomer of bisphenol A. It is likely that the presence of this antioxidant in the phthalate standard was responsible for the generation of a dose-response curve--which was not observed with an alternative sample that had not been supplemented with o,p'-bisphenol A--in the yeast screen; hence, DTDP is probably not weakly estrogenic. The activities of simple mixtures of BBP, DBP, and 17beta-estradiol were assessed in the yeast screen. No synergism was observed, although the activities of the mixtures were approximately additive. In summary, a small number of phthalates are weakly estrogenic in vitro. No data has yet been published on whether these are also estrogenic in vitro. No data has yet been published on whether these are also estrogenic in vivo; this will require tests using different classes of vertebrates and different routes of exposure.

770 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The evidence, from both laboratory and field studies, that exposure to steroid hormone mimics may impair reproductive function is reviewed and the weight of evidence for endocrine disruption in wildlife is critically assessed.
Abstract: In recent years, a number of man-made chemicals have been shown to be able to mimic endogenous hormones, and it has been hypothesized that alterations in the normal pattern of reproductive development seen in some populations of wildlife are linked with exposure to these chemicals. Of particular importance are those compounds that mimic estrogens and androgens (and their antagonists), because of their central role in reproductive function. In fact, the evidence showing that such chemicals actually do mimic (or antagonize) the action of hormones in the intact animal is limited. In only a few cases have laboratory studies shown that chemicals that mimic hormones at the molecular level (in vitro) also cause reproductive dysfunction in vivo at environmentally relevant concentrations. In addition, the reported studies on wild populations of animals are limited to a very few animal species and they have often centered on localized 'hot-spots' of chemical discharges. Nevertheless, many of these xenobiotics are persistent and accumulate in the environment, and therefore a more widespread phenomenon of endocrine disruption in wildlife is possible. This article reviews the evidence, from both laboratory and field studies, that exposure to steroid hormone mimics may impair reproductive function and critically assesses the weight of evidence for endocrine disruption in wildlife.

1,077 citations

Journal ArticleDOI
TL;DR: Very high concentrations of BPA and phthalates were confirmed in waste dump water and compost water samples as well as in the liquid manure samples.

920 citations

Journal ArticleDOI
TL;DR: It is shown that many of the so-called 'environmental oestrogens' also possess anti-androgenic activity, demonstrating that hormone-mimicking chemicals can have multiple hormonal activities, which may make it difficult to interpret their mechanisms of action in vivo.
Abstract: There is presently considerable interest in endocrine disruption which is a new area of endocrinology concerned with chemicals that mimic hormones, in particular sex steroids. It has been hypothesised that exposure to such chemicals may be responsible for adverse effects in both humans and wildlife. Until now, chemicals that mimic oestrogens (so-called xenoestrogens) have been the main focus of endocrine disruption research. However, recent evidence suggests that many abnormalities in the male reproductive system may be mediated via the androgen receptor. By blocking androgen action, exposure to an anti-androgen may cause changes similar to those associated with oestrogen exposure. We have used in vitro yeast-based assays to detect oestrogenic, anti-oestrogenic, androgenic and anti-androgenic activities in a variety of chemicals of current interest. We show that many of the so-called 'environmental oestrogens' also possess anti-androgenic activity. The previously reported anti-androgenic activities of vinclozolin and p,p'-1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) were confirmed. We also found that o,p'-1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), bisphenol A and butyl benzyl phthalate were anti-androgenic. However, not all xenoestrogens are also anti-androgenic, because nonylphenol was found to be a weak androgen agonist. Our results demonstrate that hormone-mimicking chemicals can have multiple hormonal activities, which may make it difficult to interpret their mechanisms of action in vivo. Although not a specific objective of this study, our results also demonstrate that yeast-based assays are powerful tools with which to investigate both agonist and antagonistic hormonal activities of chemicals.

842 citations

Journal ArticleDOI
TL;DR: Data indicate that DEHP disrupts male rat sexual differentiation by reducing T to female levels in the fetal male rat during a critical stage of reproductive tract differentiation.

737 citations

Journal ArticleDOI
TL;DR: This paper is a synthesis of the extensive literature data on behavior, transport, fate and ecotoxicological state of PAEs in environmental matrices: air, water, sediment, sludge, wastewater, soil, and biota.
Abstract: Because of their large and widespread application,phthalates or phthalic acid esters (PAEs) are ubiquitous in all the environmental compartements. They have been widely detected throughout the worldwide environment. Indoor air where people spend 65!90% of their time is also highly contaminated by various PAEs released from plastics, consumer products as well as ambient suspended particulate matter. Because of their widespread application, PAEs are the most common chemicals that humans are in contact with daily. Based on various exposure mechanisms, including the ingestion of food, drinking water, dust/soil, air inhalation and dermal exposure the daily intake of PAEs may reach values as high as 70 μg/kg/day. PAEs are involved in endocrine disrupting effects, namely, upon reproductive physiology in different species of fish and mammals. They also present a variety of additional toxic effects for many other species including terrestrial and aquatic fauna and flora. Therefore, their presence in the environment has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health. This paper is a synthesis of the extensive literature data on behavior, transport, fate and ecotoxicological state of PAEs in environmental matrices: air, water, sediment, sludge, wastewater, soil, and biota. First, the origins and physicochemical properties of PAEs that control the behavior, transport and fate in the environment are reviewed. Second, the compilation of data on transport and fate, adverse environmental and human health effects, legislation, restrictions, and ecotoxicological state of the environment based on PAEs is presented.

703 citations