scispace - formally typeset
Search or ask a question
Author

Malcolm J. Perry

Bio: Malcolm J. Perry is an academic researcher from University of Cambridge. The author has contributed to research in topics: Black hole & Instanton. The author has an hindex of 49, co-authored 129 publications receiving 14642 citations. Previous affiliations of Malcolm J. Perry include Queen Mary University of London & Indiana University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new family of solutions were found which describe spinning black holes in higher dimensional space-times, which are similar to the familiar Kerr and Schwarzschild metrics which are recovered for N = 3.

2,190 citations

Journal ArticleDOI
TL;DR: In this article, the propagation of strings in background fields, including the effects of metric, antisymmetric tensor, and dilaton expectation values, as well as gauge field backgrounds in the case of heterotic strings, is studied.

1,391 citations

Journal ArticleDOI
TL;DR: The quark model implies that superdense matter (found in neutron star cores, exploding black holes, and the early big-bang universe) consists of quarks rather than of hadrons as discussed by the authors.
Abstract: We note the following: The quark model implies that superdense matter (found in neutron-star cores, exploding black holes, and the early big-bang universe) consists of quarks rather than of hadrons. Bjorken scaling implies that the quarks interact weakly. An asymptotically free gauge theory allows realistic calculations taking full account of strong interactions.

926 citations

Journal ArticleDOI
TL;DR: This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon.
Abstract: A black hole may carry ``soft hair,'' low-energy quantum excitations that release information when the black hole evaporates.

856 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the five-dimensional Kaluza-Klein theory admits soliton solutions, which are regular, static and stable solutions of the field equations which correspond, upon quantization, to particles.

704 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a boundary of the anti-deSitter space analogous to a cut-off on the Liouville coordinate of the two-dimensional string theory is introduced to obtain certain Green's functions in 3+1-dimensional N = 4 supersymmetric Yang-Mills theory with a large number of colors via non-critical string theory.

11,887 citations

Journal ArticleDOI
TL;DR: In this paper, the holographic correspondence between field theories and string/M theory is discussed, focusing on the relation between compactifications of string theory on anti-de Sitter spaces and conformal field theories.

5,610 citations

Journal ArticleDOI
TL;DR: In this article, a non-zero B-field is introduced for string theory and the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and the corrections away from this limit are discussed.
Abstract: We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero B-field. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from this limit. Our analysis leads us to an equivalence between ordinary gauge fields and noncommutative gauge fields, which is realized by a change of variables that can be described explicitly. This change of variables is checked by comparing the ordinary Dirac-Born-Infeld theory with its noncommutative counterpart. We obtain a new perspective on noncommutative gauge theory on a torus, its T-duality, and Morita equivalence. We also discuss the D0/D4 system, the relation to M-theory in DLCQ, and a possible noncommutative version of the six-dimensional (2,0) theory.

5,121 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

01 Dec 1982
TL;DR: In this article, it was shown that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the body.
Abstract: QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of space-time outside the event horizon is very large compared to the Planck length (Għ/c3)1/2 ≈ 10−33 cm, the length scale on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe ≈ 1017 s which is very long compared to the Planck time ≈ 10−43 s. The purpose of this letter is to show that this indeed may be the case: it seems that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the black hole1. As a black hole emits this thermal radiation one would expect it to lose mass. This in turn would increase the surface gravity and so increase the rate of emission. The black hole would therefore have a finite life of the order of 1071 (M/M)−3 s. For a black hole of solar mass this is much longer than the age of the Universe. There might, however, be much smaller black holes which were formed by fluctuations in the early Universe2. Any such black hole of mass less than 1015 g would have evaporated by now. Near the end of its life the rate of emission would be very high and about 1030 erg would be released in the last 0.1 s. This is a fairly small explosion by astronomical standards but it is equivalent to about 1 million 1 Mton hydrogen bombs. It is often said that nothing can escape from a black hole. But in 1974, Stephen Hawking realized that, owing to quantum effects, black holes should emit particles with a thermal distribution of energies — as if the black hole had a temperature inversely proportional to its mass. In addition to putting black-hole thermodynamics on a firmer footing, this discovery led Hawking to postulate 'black hole explosions', as primordial black holes end their lives in an accelerating release of energy.

2,947 citations