scispace - formally typeset
Search or ask a question
Author

Malcolm J Scoble

Bio: Malcolm J Scoble is an academic researcher. The author has contributed to research in topics: Lepidoptera genitalia & Heteroneura. The author has an hindex of 1, co-authored 1 publications receiving 587 citations.

Papers
More filters
Book
01 Jan 1992
TL;DR: The adult head - feeding and sensation the adult thorax - astudy in function and effect the adult abdomen - segmentation and the genitalia juvenile stages communication - sound, hearing and scent environmental and ecological importance of Lepidoptera.
Abstract: Part 1 Form and function: the adult head - feeding and sensation the adult thorax - astudy in function and effect the adult abdomen - segmentation and the genitalia juvenile stages communication - sound, hearing and scent environmental and ecological importance of Lepidoptera. Part 3 A guide to the major taxa: introduction to the Lepidopteran classification primitive moths early Heteroneura lower Ditrysia higher Ditrysia - macrolepidopterans.

590 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results provide the first comprehensive description of the microbial diversity of a lepidopteran midgut and demonstrate that the plant species in the diet influences the composition of the gut bacterial community.
Abstract: Little is known about bacteria associated with Lepidoptera, the large group of mostly phytophagous insects comprising the moths and butterflies. We inventoried the larval midgut bacteria of a polyphagous foliivore, the gypsy moth (Lymantria dispar L.), whose gut is highly alkaline, by using traditional culturing and culture-independent methods. We also examined the effects of diet on microbial composition. Analysis of individual third-instar larvae revealed a high degree of similarity of microbial composition among insects fed on the same diet. DNA sequence analysis indicated that most of the PCR-amplified 16S rRNA genes belong to the γ-Proteobacteria and low G+C gram-positive divisions and that the cultured members represented more than half of the phylotypes identified. Less frequently detected taxa included members of the α-Proteobacterium, Actinobacterium, and Cytophaga/Flexibacter/Bacteroides divisions. The 16S rRNA gene sequences from 7 of the 15 cultured organisms and 8 of the 9 sequences identified by PCR amplification diverged from previously reported bacterial sequences. The microbial composition of midguts differed substantially among larvae feeding on a sterilized artificial diet, aspen, larch, white oak, or willow. 16S rRNA analysis of cultured isolates indicated that an Enterococcus species and culture-independent analysis indicated that an Entbacter sp. were both present in all larvae, regardless of the feeding substrate; the sequences of these two phylotypes varied less than 1% among individual insects. These results provide the first comprehensive description of the microbial diversity of a lepidopteran midgut and demonstrate that the plant species in the diet influences the composition of the gut bacterial community.

478 citations

Journal ArticleDOI
TL;DR: There is a need for studies of pollinator species composition and relative abundance, rather than simply species richness and aggregate abundance, to identify the species that are lost and gained with increasing land-use change.
Abstract: Animals pollinate 87% of the world’s flowering plant species. Therefore, how pollinators respond to human-induced land-use change has important implications for plants and the species that depend on them. Here, we synthesize the published literature on how land-use change affects the main groups of pollinators: bees, butterflies, flies, birds, and bats. Responses to land-use change are predominantly negative but are highly variable within and across taxa. The directionality of pollinator response varies according to study design, with comparisons across gradients in surrounding landscape cover finding largely negative responses and comparisons across local land-use types finding largely positive responses. Furthermore, among the studies using landscape designs, most were performed in systems where landuse change is extreme, and such studies find stronger negative effects than those performed in more moderate systems. Across multiple taxa, dietary specialists show greater sensitivity to land use than do generalists. There is a need for studies of pollinator species composition and relative abundance, rather than simply species richness and aggregate abundance, to identify the species that are lost and gained with increasing land-use change.

462 citations

Journal ArticleDOI
14 Dec 2012-Science
TL;DR: This work sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama using a comprehensive range of structured protocols and found that models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well.
Abstract: Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.

455 citations

Journal ArticleDOI
TL;DR: Using a dataset extending back to the mid-nineteenth century, changes in the voltinism of butterfly and moth species of Central Europe are reported, showing a significant proportion of 263 multi-voltine species showed augmented frequency of second and subsequent generations relative to the first generation in a warm period since 1980.
Abstract: Climate change is altering geographical ranges, population dynamics and phenologies of many organisms. For ectotherms, increased ambient temperatures frequently have direct consequences for metabolic rates, activity patterns and developmental rates. Consequently, in many insect species both an earlier beginning and prolongation of seasonal duration occurred in parallel with recent global warming. However, from an ecological and evolutionary perspective, the number of generations (voltinism) and investment into each generation may be even more important than seasonality, since an additional generation per unit time may accelerate population growth or adaptation. Using a dataset extending back to the mid-nineteenth century, I report changes in the voltinism of butterfly and moth species of Central Europe. A significant proportion of 263 multi-voltine species showed augmented frequency of second and subsequent generations relative to the first generation in a warm period since 1980, and 44 species even increased the number of generations after 1980. Expected ecological consequences are diverse. Since multi-voltinism has been linked to insect outbreaks they include an increase in the abundance of herbivorous pests of agriculture and forestry. However, disruption of the developmental synchrony associated with multi-voltinism and host plant phenology may also reduce fitness, potentially having unexpected consequences for species of conservation concern. The ability of species to adapt evolutionarily to a changing environment may be facilitated by increased voltinism.

362 citations

Journal ArticleDOI
21 Dec 2007-Zootaxa
TL;DR: The currently recognized robust support for the monophyly of the Lepidoptera is outlined, and the phylogeny of the principal lineages within the order is reviewed succinctly, and some thoughts on how present and future systematic lepidopterology might be prioritised are presented.
Abstract: The currently recognized robust support for the monophyly of the Lepidoptera (and the superorder Amphiesmenoptera comprising Lepidoptera + Trichoptera) is outlined, and the phylogeny of the principal lineages within the order is reviewed succinctly. The state of the taxonomic inventory of Lepidoptera is discussed separately for ‘micro-moths’, ‘macro-moths’ and butterflies, three assemblages on which work has followed historically somewhat different paths. While currently there are about 160,000 described species of Lepidoptera, the total number of extant species is estimated to be around half a million. On average, just over one thousand new species of Lepidoptera have been described annually in recent years. Allowing for the new synonyms simultaneously established, the net increase in species numbers still exceeds 800/year. Most of the additions are foreseeable in the micro-moth grade, but even for butterflies ca 100 species are added annually. Examples of particularly interesting new high-rank taxa that have been described (or whose significance has become realized) since the middle of the 20th century include the non-glossatan lineages represented by Agathiphaga and Heterobathmia and the heteroneuran families Andesianidae, Palaephatidae, Hedylidae and Micronoctuidae. Some thoughts on how present and future systematic lepidopterology might be prioritised are presented.

322 citations