scispace - formally typeset
Search or ask a question
Author

Malcolm L. H. Green

Bio: Malcolm L. H. Green is an academic researcher from University of Oxford. The author has contributed to research in topics: Carbon nanotube & Cyclopentadienyl complex. The author has an hindex of 82, co-authored 800 publications receiving 31121 citations. Previous affiliations of Malcolm L. H. Green include Gas Technology Institute & University of Illinois at Urbana–Champaign.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the photoelectron spectra of several Ti(η-C7H7) compounds are discussed in terms of the nature of the Ti(−−−3) bonding and the crystal structure of the latter has been determined.
Abstract: Bis(η-toluene)titanium reacts with cycloheptatriene in the presence of (AlEtCl2)2, at > 60 °C to form [Ti(η-C7H7)(η-C7H9)] and at room temperature [{Ti(η-C7H7)(thf)(µ-Cl)}2](thf = tetrahydrofuran) is also formed. The crystal structure of the latter has been determined. The dimer reacts with the ligands L2= R2PCH2CH2PR2(R = Me or Ph), trans-1,2-bis(dimethylphosphino)cyclopentane, MeOCH2CH2OMe, 2PMe3 or Me2NCH2CH2NMe2, forming the compounds [Ti(η-C7H7)L2Cl]. Reaction of alkyl Grignard reagents with the appropriate chloroderivatives gives the titanium–alkyls [Ti(η-C7H7)L2R][L2= Me2PCH2CH2PMe2, R = Me or Et; L2=trans-1,2-C5H8(PMe2)2, R = Me]. The crystal structure of [Ti(η-C7H7)(Me2PCH2CH2PMe2)Et] has been determined: there is no evidence for Ti–H–C interactions between the Ti and the hydrogens of the ethyl group. The photoelectron spectra of several Ti(η-C7H7) compounds are discussed in terms of the nature of the Ti(η-C7H7) bonding. It is proposed that the chemistry of the Ti(η-C7H7) system corresponds most closely to a formal description of the η-C7H7 group as having a –3 charge rather than the more conventional description as +1. Homogeneous mixtures of [{Ti(η-C7H7)(thf)(µ-Cl)}2] and aluminium alkyls are shown to catalyse ethylene polymerisation.
Patent
20 Jun 1977
TL;DR: In this paper, a differential pumping device mounted in an evacuable container between an evaporant source providing a first chemical constituent and the reaction region is described. But it is not shown how to apply differential pumping to the source of one of the constituents.
Abstract: Chemical synthesis apparatus includes a differential pumping device mounted in an evacuable container between an evaporant source providing a first chemical constituent and the reaction region. The differential pumping can be provided by apertured diaphragms or hollow cones, which may be cooled, mounted directly above the source which is thereby maintained at a lower pressure than the reaction region. The source may be an electron beam source or a resistively heated source arranged to direct the evaporant upwards into the reaction region and a second chemical constituent may be introduced into the reaction region. The invention also provides a method of chemical synthesis in which differential pumping is carried out between the reaction region and the source of one of the constituents.

Cited by
More filters
Journal ArticleDOI
Sumio Iijima1, Toshinari Ichihashi1
17 Jun 1993-Nature
TL;DR: In this article, the authors reported the synthesis of abundant single-shell tubes with diameters of about one nanometre, whereas the multi-shell nanotubes are formed on the carbon cathode.
Abstract: CARBON nanotubes1 are expected to have a wide variety of interesting properties. Capillarity in open tubes has already been demonstrated2–5, while predictions regarding their electronic structure6–8 and mechanical strength9 remain to be tested. To examine the properties of these structures, one needs tubes with well defined morphologies, length, thickness and a number of concentric shells; but the normal carbon-arc synthesis10,11 yields a range of tube types. In particular, most calculations have been concerned with single-shell tubes, whereas the carbon-arc synthesis produces almost entirely multi-shell tubes. Here we report the synthesis of abundant single-shell tubes with diameters of about one nanometre. Whereas the multi-shell nanotubes are formed on the carbon cathode, these single-shell tubes grow in the gas phase. Electron diffraction from a single tube allows us to confirm the helical arrangement of carbon hexagons deduced previously for multi-shell tubes1.

8,018 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
01 Feb 2013-Science
TL;DR: Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Abstract: Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

4,596 citations

Journal ArticleDOI
TL;DR: The features of nanoparticle therapeutics that distinguish them from previous anticancer therapies are highlighted, and how these features provide the potential for therapeutic effects that are not achievable with other modalities are described.
Abstract: Nanoparticles — particles in the size range 1–100 nm — are emerging as a class of therapeutics for cancer. Early clinical results suggest that nanoparticle therapeutics can show enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumours and active cellular uptake. Here, we highlight the features of nanoparticle therapeutics that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While large numbers of preclinical studies have been published, the emphasis here is placed on preclinical and clinical studies that are likely to affect clinical investigations and their implications for advancing the treatment of patients with cancer.

3,975 citations

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations