scispace - formally typeset
Search or ask a question
Author

Malcolm L. H. Green

Bio: Malcolm L. H. Green is an academic researcher from University of Oxford. The author has contributed to research in topics: Carbon nanotube & Cyclopentadienyl complex. The author has an hindex of 82, co-authored 800 publications receiving 31121 citations. Previous affiliations of Malcolm L. H. Green include Gas Technology Institute & University of Illinois at Urbana–Champaign.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the X-ray crystal structure of Me2PCH2CH2PMe2)MeCl3 showed that a Ti-C-H angle and the corresponding Ti-H distance of the Ti-Me moiety are 70(2)° and 2.03(4)A, respectively.
Abstract: The X-ray crystal structure of Ti(Me2PCH2CH2PMe2)MeCl3 shows that a Ti–C–H angle and the corresponding Ti–H distance of the Ti–Me moiety are 70(2)° and 2.03(4)A, respectively; the bonding of the Ti-H-C(methyl) system is described in terms of a two-electron three-centred covalent bond and it is proposed that such distorted transition metal–α-hydrogen interactions will occur quite widely.

53 citations

Journal ArticleDOI
TL;DR: Conformal growth of PbI( 2) layers on the inner wall of the relatively wide WS(2) nanotubes leads to nanotubular structures which were not previously observed in narrow carbon nanotube templates.
Abstract: Multiwall WS(2) nanotube templates were used as hosts to prepare core-shell PbI(2)@WS(2) nanotubes by a capillary-wetting method. Conformal growth of PbI(2) layers on the inner wall of the relatively wide WS(2) nanotubes (i.d. ca. 10 nm) leads to nanotubular structures which were not previously observed in narrow carbon nanotube templates. Image simulation after structural modeling (see picture) showed good agreement with the experimental HRTEM image.

53 citations

Journal ArticleDOI
TL;DR: Ortho-carborane molecules have been inserted into single walled carbon nanotubes (SWNTs) and imaged directly by high resolution transmission electron microscopy (HRTEM); both discrete molecules and 'zig-zag' 1D chains of o- carborane 'petit pois' were observed to pack into the tubule capillaries.

53 citations

Journal ArticleDOI
TL;DR: UV-vis diffuse reflection spectra confirm that new absorptions in the visible light region are related to the defect content and X-ray photoelectron spectroscopy implies that the active sites of the surface are blocked by hydroxyl groups, which results in the decrease of hydrogen evolution.
Abstract: The hydrogen evolution from aqueous methanol solutions was found to follow two stages of zero order kinetics during photoreactions using TiO2 as the photocatalyst. Maximal hydrogen evolution was found at the 10% (v/v) methanol solution. X-ray photoelectron spectroscopy (XPS) shows that Ti(1566) defects are formed on the surface of TiO2 and X-ray powder diffraction (XRD) indicates that Ti(1566) defects are also formed in the bulk after photoreaction. Formation of defects is also shown by broadening of Bragg peaks and blue shifts and peak broadening in Raman spectroscopy. The defect disorder results in the increase of hydrogen evolution. UV−vis diffuse reflection spectra confirm that new absorptions in the visible light region are related to the defect content. At high methanol concentration, XPS implies that the active sites of the surface are blocked by hydroxyl groups, which results in the decrease of hydrogen evolution. TEM images showed that the photoreaction occurred on the surface of the photocatalys...

53 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that ultrasonic irradiation increases the rates of intercalation (by as much as 200-fold) of organic and organometallic compounds into various layered inorganic oxide and sulphide host solids.
Abstract: Ultrasonic irradiation increases the rates of intercalation (by as much as 200-fold) of organic and organometallic compounds into various layered inorganic oxide and sulphide host solids.

52 citations


Cited by
More filters
Journal ArticleDOI
Sumio Iijima1, Toshinari Ichihashi1
17 Jun 1993-Nature
TL;DR: In this article, the authors reported the synthesis of abundant single-shell tubes with diameters of about one nanometre, whereas the multi-shell nanotubes are formed on the carbon cathode.
Abstract: CARBON nanotubes1 are expected to have a wide variety of interesting properties. Capillarity in open tubes has already been demonstrated2–5, while predictions regarding their electronic structure6–8 and mechanical strength9 remain to be tested. To examine the properties of these structures, one needs tubes with well defined morphologies, length, thickness and a number of concentric shells; but the normal carbon-arc synthesis10,11 yields a range of tube types. In particular, most calculations have been concerned with single-shell tubes, whereas the carbon-arc synthesis produces almost entirely multi-shell tubes. Here we report the synthesis of abundant single-shell tubes with diameters of about one nanometre. Whereas the multi-shell nanotubes are formed on the carbon cathode, these single-shell tubes grow in the gas phase. Electron diffraction from a single tube allows us to confirm the helical arrangement of carbon hexagons deduced previously for multi-shell tubes1.

8,018 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
01 Feb 2013-Science
TL;DR: Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Abstract: Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

4,596 citations

Journal ArticleDOI
TL;DR: The features of nanoparticle therapeutics that distinguish them from previous anticancer therapies are highlighted, and how these features provide the potential for therapeutic effects that are not achievable with other modalities are described.
Abstract: Nanoparticles — particles in the size range 1–100 nm — are emerging as a class of therapeutics for cancer. Early clinical results suggest that nanoparticle therapeutics can show enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumours and active cellular uptake. Here, we highlight the features of nanoparticle therapeutics that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While large numbers of preclinical studies have been published, the emphasis here is placed on preclinical and clinical studies that are likely to affect clinical investigations and their implications for advancing the treatment of patients with cancer.

3,975 citations

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations