scispace - formally typeset
Search or ask a question
Author

Malcolm Macaulay

Bio: Malcolm Macaulay is an academic researcher from James Hutton Institute. The author has contributed to research in topics: Hordeum vulgare & Population. The author has an hindex of 22, co-authored 45 publications receiving 3509 citations. Previous affiliations of Malcolm Macaulay include Scottish Crop Research Institute.

Papers
More filters
Journal ArticleDOI
01 Dec 2000-Genetics
TL;DR: The mapped SSRs provide a framework for rapidly assigning chromosomal designations and polarity in future mapping programs in barley and a convenient alternative to RFLP for aligning information derived from different populations.
Abstract: A total of 568 new simple sequence repeat (SSR)-based markers for barley have been developed from a combination of database sequences and small insert genomic libraries enriched for a range of short simple sequence repeats. Analysis of the SSRs on 16 barley cultivars revealed variable levels of informativeness but no obvious correlation was found with SSR repeat length, motif type, or map position. Of the 568 SSRs developed, 242 were genetically mapped, 216 with 37 previously published SSRs in a single doubled-haploid population derived from the F(1) of an interspecific cross between the cultivar Lina and Hordeum spontaneum Canada Park and 26 SSRs in two other mapping populations. A total of 27 SSRs amplified multiple loci. Centromeric clustering of markers was observed in the main mapping population; however, the clustering severity was reduced in intraspecific crosses, supporting the notion that the observed marker distribution was largely a genetical effect. The mapped SSRs provide a framework for rapidly assigning chromosomal designations and polarity in future mapping programs in barley and a convenient alternative to RFLP for aligning information derived from different populations. A list of the 242 primer pairs that amplify mapped SSRs from total barley genomic DNA is presented.

657 citations

Journal ArticleDOI
TL;DR: RFLPs, AFLPs, RAPDs and SSRs were used to determine the genetic relationships among 18 cultivated barley accessions and the results compared to pedigree relationships where these were available and the choice of appropriate technology for different aspects of germplasm evaluation is discussed.
Abstract: RFLPs, AFLPs, RAPDs and SSRs were used to determine the genetic relationships among 18 cultivated barley accessions and the results compared to pedigree relationships where these were available. All of the approaches were able to uniquely fingerprint each of the accessions. The four assays differed in the amount of polymorphism detected. For example, all 13 SSR primers were polymorphic, with an average of 5.7 alleles per primer set, while nearly 54% of the fragments generated using AFLPs were monomorphic. The highest diversity index was observed for AFLPs (0.937) and the lowest for RFLP (0.322). Principal co-ordinate analysis (PCoA) clearly separated the spring types from the winter types using RFLP and AFLP data with the two-row winter types forming an intermediate group. Only a small group of spring types clustered together using SSR data with the two-row and six-row winter varieties more widely dispersed. Direct comparisons between genetic similarity (GS) estimates revealed by each of the assays were measured by a number of approaches. Spearman rank correlation ranked over 70% of the pairwise comparisons between AFLPs and RFLPs in the same order. SSRs had the lowest values when compared to the other three assays. These results are discussed in terms of the choice of appropriate technology for different aspects of germplasm evaluation.

591 citations

Journal ArticleDOI
01 Oct 2000-Genetics
TL;DR: In this article, the type and frequency of simple sequence repeats (SSRs) in plant genomes were investigated using the expanding quantity of DNA sequence data deposited in public databases, and an approach was proposed and demonstrated for the targeted isolation of single or multiple, physically clustered SSRs linked to any gene that has been mapped using low-copy DNA-based markers.
Abstract: The type and frequency of simple sequence repeats (SSRs) in plant genomes was investigated using the expanding quantity of DNA sequence data deposited in public databases. In Arabidopsis, 306 genomic DNA sequences longer than 10 kb and 36,199 EST sequences were searched for all possible mono- to pentanucleotide repeats. The average frequency of SSRs was one every 6.04 kb in genomic DNA, decreasing to one every 14 kb in ESTs. SSR frequency and type differed between coding, intronic, and intergenic DNA. Similar frequencies were found in other plant species. On the basis of these findings, an approach is proposed and demonstrated for the targeted isolation of single or multiple, physically clustered SSRs linked to any gene that has been mapped using low-copy DNA-based markers. The approach involves sample sequencing a small number of subclones of selected randomly sheared large insert DNA clones (e.g., BACs). It is shown to be both feasible and practicable, given the probability of fortuitously sequencing through an SSR. The approach is demonstrated in barley where sample sequencing 34 subclones of a single BAC selected by hybridization to the Big1 gene revealed three SSRs. These allowed Big1 to be located at the top of barley linkage group 6HS.

418 citations

Journal ArticleDOI
TL;DR: It is shown that INT-C is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1 (TB1) and 17 coding mutations in barley TB1 correlated with lateral spikelet fertility phenotypes are identified and identified.
Abstract: The domestication of cereals has involved common changes in morphological features, such as seed size, seed retention and modification of vegetative and inflorescence architecture that ultimately contributed to an increase in harvested yield. In barley, this process has resulted in two different cultivated types, two-rowed and six-rowed forms, both derived from the wild two-rowed ancestor, with archaeo-botanical evidence indicating the origin of six-rowed barley early in the domestication of the species, some 8,600-8,000 years ago. Variation at SIX-ROWED SPIKE 1 (VRS1) is sufficient to control this phenotype. However, phenotypes imposed by VRS1 alleles are modified by alleles at the INTERMEDIUM-C (INT-C) locus. Here we show that INT-C is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1 (TB1) and identify 17 coding mutations in barley TB1 correlated with lateral spikelet fertility phenotypes.

291 citations

Journal ArticleDOI
TL;DR: The methodology described here is transferable to species with limited genomic resources, providing a paradigm for reducing the threshold of map-based cloning in unsequenced crops.
Abstract: Although commonplace in human disease genetics, genome-wide association (GWA) studies have only relatively recently been applied to plants. Using 32 phenotypes in the inbreeding crop barley, we report GWA mapping of 15 morphological traits across ∼500 cultivars genotyped with 1,536 SNPs. In contrast to the majority of human GWA studies, we observe high levels of linkage disequilibrium within and between chromosomes. Despite this, GWA analysis readily detected common alleles of high penetrance. To investigate the potential of combining GWA mapping with comparative analysis to resolve traits to candidate polymorphism level in unsequenced genomes, we fine-mapped a selected phenotype (anthocyanin pigmentation) within a 140-kb interval containing three genes. Of these, resequencing the putative anthocyanin pathway gene HvbHLH1 identified a deletion resulting in a premature stop codon upstream of the basic helix-loop-helix domain, which was diagnostic for lack of anthocyanin in our association and biparental mapping populations. The methodology described here is transferable to species with limited genomic resources, providing a paradigm for reducing the threshold of map-based cloning in unsequenced crops.

257 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
Hans Ellegren1
TL;DR: Few genetic markers, if any, have found such widespread use as microsatellites, or simple/short tandem repeats, but features such as hypervariability and ubiquitous occurrence explain their usefulness, but these features also pose several questions.
Abstract: Few genetic markers, if any, have found such widespread use as microsatellites, or simple/short tandem repeats. Features such as hypervariability and ubiquitous occurrence explain their usefulness, but these features also pose several questions. For example, why are microsatellites so abundant, why are they so polymorphic and by what mechanism do they mutate? Most importantly, what governs the intricate balance between the frequent genesis and expansion of simple repetitive arrays, and the fact that microsatellite repeats rarely reach appreciable lengths? In other words, how do microsatellites evolve?

2,140 citations

Journal ArticleDOI
TL;DR: Results show that with the software tool developed, EST databases can be efficiently exploited for the development of cDNA-SSRs, EST-derived SSRs are significantly less polymorphic than those derived from genomic regions, a considerable portion of the developed SSRs can be transferred to related species, and compared to RFLP-markers, c DNA- SSRs yield similar patterns of genetic diversity.
Abstract: A software tool was developed for the identification of simple sequence repeats (SSRs) in a barley (Hordeum vulgare L.) EST (expressed sequence tag) database comprising 24,595 sequences. In total, 1,856 SSR-containing sequences were identified. Trimeric SSR repeat motifs appeared to be the most abundant type. A subset of 311 primer pairs flanking SSR loci have been used for screening polymorphisms among six barley cultivars, being parents of three mapping populations. As a result, 76 EST-derived SSR-markers were integrated into a barley genetic consensus map. A correlation between polymorphism and the number of repeats was observed for SSRs built of dimeric up to tetrameric units. 3′-ESTs yielded a higher portion of polymorphic SSRs (64%) than 5′-ESTs did. The estimated PIC (polymorphic information content) value was 0.45 ± 0.03. Approximately 80% of the SSR-markers amplified DNA fragments in Hordeum bulbosum, followed by rye, wheat (both about 60%) and rice (40%). A subset of 38 EST-derived SSR-markers comprising 114 alleles were used to investigate genetic diversity among 54 barley cultivars. In accordance with a previous, RFLP-based, study, spring and winter cultivars, as well as two- and six-rowed barleys, formed separate clades upon PCoA analysis. The results show that: (1) with the software tool developed, EST databases can be efficiently exploited for the development of cDNA-SSRs, (2) EST-derived SSRs are significantly less polymorphic than those derived from genomic regions, (3) a considerable portion of the developed SSRs can be transferred to related species, and (4) compared to RFLP-markers, cDNA-SSRs yield similar patterns of genetic diversity.

2,093 citations

Journal ArticleDOI
TL;DR: Physiological mechanisms and selectable indicators of gene action that underlie traits for salt tolerance are described, with the aim of promoting new screening methods to identify genetic variation for increasing the salt tolerance of cereal crops.
Abstract: This review describes physiological mechanisms and selectable indicators of gene action, with the aim of promoting new screening methods to identify genetic variation for increasing the salt tolerance of cereal crops. Physiological mechanisms that underlie traits for salt tolerance could be used to identify new genetic sources of salt tolerance. Important mechanisms of tolerance involve Na+ exclusion from the transpiration stream, sequestration of Na+ and Cl- in the vacuoles of root and leaf cells, and other processes that promote fast growth despite the osmotic stress of the salt outside the roots. Screening methods for these traits are discussed in relation to their use in breeding, particularly with respect to wheat. Precise phenotyping is the key to finding and introducing new genes for salt tolerance into crop plants.

1,841 citations

Journal ArticleDOI
TL;DR: Applications and potential uses of EST-SSRs in plant genetics and breeding could prove useful for marker-assisted selection, especially when the markers reside in the genes responsible for a phenotypic trait.

1,750 citations