scispace - formally typeset
Search or ask a question
Author

Malcom J. Stott

Bio: Malcom J. Stott is an academic researcher from Queen's University. The author has an hindex of 1, co-authored 1 publications receiving 552 citations.

Papers
More filters
Journal Article•DOI•
TL;DR: Silicon (Si) substitution in the crystal structures of calcium phosphate (CaP) ceramics such as hydroxyapatite (HA) and tricalcium phosphate (TCP) generates materials with superior biological performance to stoichiometric counterparts.

601 citations


Cited by
More filters
Journal Article•DOI•
TL;DR: The currently available bone grafts and bone substitutes as well as the biological and bio-inorganic factors for the treatments of bone defect are reviewed.

1,109 citations

Journal Article•DOI•
TL;DR: Current biomedical applications of calcium orthophosphate bioceramics include replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery.

1,019 citations

Journal Article•DOI•
TL;DR: An overview of the recent results achieved on ion-substituted calcium phosphates prepared at low temperature, i.e. by direct synthesis in aqueous medium or through hydrolysis of more soluble calcium phosphate based materials is provided.

697 citations

Journal Article•DOI•
TL;DR: Calcium orthophosphates are of great significance for humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Abstract: The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. These materials are of the special significance because they represent the inorganic part of major normal (bones, teeth and dear antlers) and pathological ( i.e. those appearing due to various diseases) calcified tissues of mammals. Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium ortho-phosphates. For example, self-setting hydraulic cements made of calcium orthophosphates are helpful in bone repair, while titanium substitutes covered by a surface layer of calcium orthophosphates are used for hip joint endoprostheses and as tooth substitutes. Porous scaffolds made of calcium orthophosphates are very promising tools for tissue engineering applications. In addition, technical grade calcium orthophosphates are very popular mineral fertilizers. Thus ere calcium orthophosphates are of great significance for humankind and, in this paper, an overview on the current knowledge on this subject is provided.

637 citations

Journal Article•DOI•
TL;DR: The aim of this manuscript is to highlight the tremendous improvements achieved in CaP materials research in the past 15 years, in particular in the field of biomineralization, as carrier for gene or ion delivery, as biologically active agent, and as bone graft substitute.

627 citations