scispace - formally typeset
Search or ask a question
Author

Malte Fugel

Bio: Malte Fugel is an academic researcher from University of Bremen. The author has contributed to research in topics: Atoms in molecules & Natural bond orbital. The author has an hindex of 7, co-authored 13 publications receiving 164 citations.

Papers
More filters
Journal ArticleDOI
01 Jan 2018-IUCrJ
TL;DR: Anisotropic atomic displacement parameters obtained separately from highly accurate X-ray and neutron diffraction data are compared and it is established that Hirshfeld atom refinement of X-rays can provide structural parameters that are as accurate as those from neutron data.

62 citations

Journal ArticleDOI
TL;DR: It is found that intermolecular hydrogen bonding is significant at small Si-O-Si angles and weakens as the Si- O-Si angle increases until no stable hydrogen-bond complexes are obtained beyond φSiOSi =168°, angles typically displayed by minerals or polymers.
Abstract: Covalency and ionicity are orthogonal rather than antipodal concepts. We demonstrate for the case of siloxane systems [R3Si-(O-SiR2)(n)-O-SiR3] that both covalency and ionicity of the Si-O bonds impact on the basicity of the Si-O-Si linkage. The relationship between the siloxane basicity and the Si-O bond character has been under debate since previous studies have presented conflicting explanations. It has been shown with natural bond orbital methods that increased hyperconjugative interactions of LP(O)->sigma*(Si-R) type, that is, increased orbital overlap and hence covalency, are responsible for the low siloxane basicity at large Si-O-Si angles. On the other hand, increased ionicity towards larger Si-O-Si angles has been revealed with real-space bonding indicators. To resolve this ostensible contradiction, we perform a complementary bonding analysis, which combines orbital-space, real-space, and bond-index considerations. We analyze the isolated disiloxane molecule H3SiOSiH3 with varying Si-O-Si angles, and n-membered cyclic siloxane systems Si2H4O(CH2)(n-3). All methods from quite different realms show that both covalent and ionic interactions increase simultaneously towards larger Si-O-Si angles. In addition, we present highly accurate absolute hydrogen-bond interaction energies of the investigated siloxane molecules with water and silanol as donors. It is found that intermolecular hydrogen bonding is significant at small Si-O-Si angles and weakens as the Si-O-Si angle increases until no stable hydrogen-bond complexes are obtained beyond phi(SiOSi) = 168 degrees, angles typically displayed by minerals or polymers. The maximum hydrogen-bond interaction energy, which is obtained at an angle of 105 degrees, is 11.05 kJ mol(-1) for the siloxane-water complex and 18.40 kJ mol(-1) for the siloxane-silanol complex.

36 citations

Journal ArticleDOI
TL;DR: This first comprehensive comparison of modern bonding analysis methods is provided to reveal their informative value and gain a deep insight into the nature of the element-oxygen bond across the periodic table.
Abstract: There is a great variety of bond analysis tools that aim to extract information on the bonding situation from the molecular wavefunction. Because none of these can fully describe bonding in all of its complexity, it is necessary to regard a balanced selection of complementary analysis methods to obtain a reliable chemical conclusion. This is, however, not a feasible approach in most studies because it is a time-consuming procedure. Therefore, we provide the first comprehensive comparison of modern bonding analysis methods to reveal their informative value. The element-oxygen bond of neutral Hn XOH model compounds (X=Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl) is investigated with a selection of different bond analysis tools, which may be assigned into three different categories: i) real space bonding indicators (quantum theory of atoms in molecules (QTAIM), the electron localizability indicator (ELI-D), and the Raub-Jansen index), ii) orbital-based descriptors (natural bond orbitals (NBO), natural resonance theory (NRT), and valence bond (VB) calculations), and iii) energy analysis methods (energy decomposition analysis (EDA) and the Q-analysis). Besides gaining a deep insight into the nature of the element-oxygen bond across the periodic table, this systematic investigation allows us to get an impression on how well these tools complement each other. Ionic, highly polarized, polarized covalent, and charge-shift bonds are discerned from each other.

31 citations

Journal ArticleDOI
TL;DR: This case study encourages the use of a well-balanced toolbox equipped with complementary methods to emphasize different aspects of bonding because they reveal different aspects based on different sensitivity to dispersive, electrostatic, and polar-covalent contributions to bonding.
Abstract: The second-order nucleophilic substitution (SN 2) reaction at a silicon atom is scrutinized by means of snapshots along a pseudoreaction coordinate. Phosphine and fluoride represent both attacking and leaving groups in the modeled SN 2 reaction. In the experimentally obtained 5-diphenylphosphinoacenaphth-6-yl-dimethylfluorosilane, 1, the phosphine and fluorosilane moieties are forced into immediate proximity through an acenaphthyl scaffold, that is, they exhibit peri interactions that serve as the model of the reactant ion-molecule complex and starting point for a theoretical potential-energy surface (PES) scan. Upon dissociation of fluoride, the experimentally obtained silylphosphonium cation 2 serves as a model of the product and end point of the PES scan. The pseudoreaction pathway is studied using geometric, energetic, spectroscopic, molecular-orbital, and topological real-space bonding indicators. It becomes evident that it is crucial to combine such methods to understand the pseudoreaction because they reveal different aspects based on different sensitivity to dispersive, electrostatic, and polar-covalent contributions to bonding, as shown by the reduced density gradient analysis. For example, atoms-in-molecules theory describes a late topological catastrophe, whereas the electron localizability indicator describes an early concerted reaction and natural resonance theory describes a more gradual change of properties. This case study encourages the use of a well-balanced toolbox equipped with complementary methods to emphasize different aspects of bonding.

23 citations

Journal ArticleDOI
TL;DR: Experimental information from the new field of quantum crystallography validate long-known facts, or refute long-standing misunderstandings on hypervalent atoms in molecules.
Abstract: There are many examples of atoms in molecules that violate Lewis' octet rule, because they have more than four electron pairs assigned to their valence. These atoms are referred to as hypervalent. However, hypervalency may be regarded as an artifact arising from Lewis' description of molecules, which is based on the assumption that electrons are localized in two-center two-electron bonds and lone pairs. In the present paper, the isoelectronic phosphate (PO4 3- ), sulfate (SO4 2- ) and perchlorate (ClO4 - ) anions were examined with respect to the concept of hypervalency. Lewis formulas containing a hypervalent central atom exist for all three anions. Based on X-ray wavefunction refinements of high-resolution X-ray diffraction data of representative crystal structures (MgNH4 PO4 ⋅6 H2 O, Li2 SO4 ⋅H2 O, and KClO4 ), complementary bonding analyses were performed. In this way, experimental information from the new field of quantum crystallography validate long-known facts, or refute long-standing misunderstandings. It is shown that the P-O and S-O bonds are highly polarized covalent bonds and, thus, the increase in the valence population following three-center four-electron bonding is not sufficient to yield hypervalent phosphorus or sulfur atoms, respectively. However, for the highly covalent Cl-O bond, most bonding indicators imply a hypervalent chlorine atom.

18 citations


Cited by
More filters
01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: This paper provides additional background information on the checkCIF procedure and additional details for a number of ALERTS along with options for how to act on them.
Abstract: Authors of a paper that includes a new crystal-structure determination are expected to not only report the structural results of inter­est and their inter­pretation, but are also expected to archive in computer-readable CIF format the experimental data on which the crystal-structure analysis is based. Additionally, an IUCr/checkCIF validation report will be required for the review of a submitted paper. Such a validation report, automatically created from the deposited CIF file, lists as ALERTS not only potential errors or unusual findings, but also suggestions for improvement along with inter­esting information on the structure at hand. Major ALERTS for issues are expected to have been acted on already before the submission for publication or discussed in the associated paper and/or commented on in the CIF file. In addition, referees, readers and users of the data should be able to make their own judgment and inter­pretation of the underlying experimental data or perform their own calculations with the archived data. All the above is consistent with the FAIR (findable, accessible, inter­operable, and reusable) initiative [Helliwell (2019). Struct. Dyn. 6, 05430]. Validation can also be helpful for less experienced authors in pointing to and avoiding of crystal-structure determination and inter­pretation pitfalls. The IUCr web-based checkCIF server provides such a validation report, based on data uploaded in CIF format. Alternatively, a locally installable checkCIF version is available to be used iteratively during the structure-determination process. ALERTS come mostly as short single-line messages. There is also a short explanation of the ALERTS available through the IUCr web server or with the locally installed PLATON/checkCIF version. This paper provides additional background information on the checkCIF procedure and additional details for a number of ALERTS along with options for how to act on them.

634 citations

Journal ArticleDOI
TL;DR: A robust and fast system where modern chemical structure models replace the old assumptions, leading to correct structures from the model refinement against standard in-house diffraction data using no more than widely available software and desktop computing power is devised.
Abstract: The relationship between the structure and the properties of a drug or material is a key concept of chemistry. Knowledge of the three-dimensional structure is considered to be of such importance that almost every report of a new chemical compound is accompanied by an X-ray crystal structure – at least since the 1970s when diffraction equipment became widely available. Crystallographic software of that time was restricted to very limited computing power, and therefore drastic simplifications had to be made. It is these simplifications that make the determination of the correct structure, especially when it comes to hydrogen atoms, virtually impossible. We have devised a robust and fast system where modern chemical structure models replace the old assumptions, leading to correct structures from the model refinement against standard in-house diffraction data using no more than widely available software and desktop computing power. We call this system NoSpherA2 (Non-Spherical Atoms in Olex2). We explain the theoretical background of this technique and demonstrate the far-reaching effects that the improved structure quality that is now routinely available can have on the interpretation of chemical problems exemplified by five selected examples.

107 citations

Journal ArticleDOI
TL;DR: The paper collects the answers of the authors to the following questions: Is the lack of precision in the definition of many chemical concepts one of the reasons for the coexistence of many partition schemes?
Abstract: The paper collects the answers of the authors to the following questions : Is the lack of precision in the definition of many chemical concepts one of the reasons for the coexistence of many partition schemes? Does the adoption of a given partition scheme imply a set of more precise definitions of the underlying chemical concepts? How can one use the results of a partition scheme to improve the clarity of definitions of concepts? Are partition schemes subject to scientific Darwinism? If so, what is the influence of a community's sociological pressure in the “natural selection” process? To what extent does/can/should investigated systems influence the choice of a particular partition scheme? Do we need more focused chemical validation of Energy Decomposition Analysis (EDA) methodology and descriptors/terms in general? Is there any interest in developing common benchmarks and test sets for cross‐validation of methods? Is it possible to contemplate a unified partition scheme (let us call it the “standard model” of partitioning), that is proper for all applications in chemistry, in the foreseeable future or even in principle? In the end, science is about experiments and the real world. Can one, therefore, use any experiment or experimental data be used to favor one partition scheme over another?

103 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive summary of the fundamental facts and principles of the chemistry of silyl cations, including reliable ways of their preparation as well as their physical and chemical properties.
Abstract: The history of silyl cations has all the makings of a drama but with a happy ending. Being considered reactive intermediates impossible to isolate in the condensed phase for decades, their actual c...

100 citations