scispace - formally typeset
Search or ask a question
Author

Man Yu

Bio: Man Yu is an academic researcher from The Feinstein Institute for Medical Research. The author has contributed to research in topics: Innate immune system & Cytokine. The author has an hindex of 4, co-authored 5 publications receiving 3512 citations.

Papers
More filters
Journal ArticleDOI
23 Jan 2003-Nature
TL;DR: It is reported that the nicotinic acetylcholine receptor α7 subunit is essential for inhibiting cytokine synthesis by the cholinergic anti-inflammatory pathway.
Abstract: Excessive inflammation and tumour-necrosis factor (TNF) synthesis cause morbidity and mortality in diverse human diseases including endotoxaemia, sepsis, rheumatoid arthritis and inflammatory bowel disease. Highly conserved, endogenous mechanisms normally regulate the magnitude of innate immune responses and prevent excessive inflammation. The nervous system, through the vagus nerve, can inhibit significantly and rapidly the release of macrophage TNF, and attenuate systemic inflammatory responses. This physiological mechanism, termed the 'cholinergic anti-inflammatory pathway' has major implications in immunology and in therapeutics; however, the identity of the essential macrophage acetylcholine-mediated (cholinergic) receptor that responds to vagus nerve signals was previously unknown. Here we report that the nicotinic acetylcholine receptor alpha7 subunit is required for acetylcholine inhibition of macrophage TNF release. Electrical stimulation of the vagus nerve inhibits TNF synthesis in wild-type mice, but fails to inhibit TNF synthesis in alpha7-deficient mice. Thus, the nicotinic acetylcholine receptor alpha7 subunit is essential for inhibiting cytokine synthesis by the cholinergic anti-inflammatory pathway.

2,900 citations

Journal ArticleDOI
01 Aug 2006-Shock
TL;DR: It is demonstrated that in human whole blood, neutralizing antibodies against Toll-like receptor 4 (TLR4, but not TLR2 or receptor for advanced glycation end product) dose-dependently attenuate HMGB1-induced IL-8 release, suggesting that there is a differential usage ofTLR2 and TLR4 inHMGB1 signaling in primary cells and in established cell lines.
Abstract: In response to bacterial endotoxin (e.g., LPS) or endogenous proinflammatory cytokines (e.g., TNF and IL-1β), innate immune cells release HMGB1, a late cytokine mediator of lethal endotoxemia and sepsis. The delayed kinetics of HMGB1 release makes it an attractive therapeutic target with a w

790 citations

Journal ArticleDOI
TL;DR: Methods for the isolation and purification of biologically active HMGB1 from bacteria or mammalian CHO cells that is essentially free of contaminants are reported, providing an important advance in methodology to facilitate futureHMGB1 studies.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The emerging concept of a microbiota–gut–brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.
Abstract: Recent years have witnessed the rise of the gut microbiota as a major topic of research interest in biology. Studies are revealing how variations and changes in the composition of the gut microbiota influence normal physiology and contribute to diseases ranging from inflammation to obesity. Accumulating data now indicate that the gut microbiota also communicates with the CNS — possibly through neural, endocrine and immune pathways — and thereby influences brain function and behaviour. Studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic bacteria or antibiotic drugs suggest a role for the gut microbiota in the regulation of anxiety, mood, cognition and pain. Thus, the emerging concept of a microbiota-gut-brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.

3,058 citations

Journal ArticleDOI
TL;DR: Current studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains, and microglial cells are considered the most susceptible sensors of brain pathology.
Abstract: Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.

2,998 citations

Journal ArticleDOI
TL;DR: The triggers and receptor pathways that result in sterile inflammation and its impact on human health are reviewed.
Abstract: Over the past several decades, much has been revealed about the nature of the host innate immune response to microorganisms, with the identification of pattern recognition receptors (PRRs) and pathogen-associated molecular patterns, which are the conserved microbial motifs sensed by these receptors. It is now apparent that these same PRRs can also be activated by non-microbial signals, many of which are considered as damage-associated molecular patterns. The sterile inflammation that ensues either resolves the initial insult or leads to disease. Here, we review the triggers and receptor pathways that result in sterile inflammation and its impact on human health.

2,481 citations

Journal ArticleDOI
TL;DR: How environmental factors, infectious microbes, ethnic origin, genetic susceptibility, and a dysregulated immune system can result in mucosal inflammation are discussed.

1,749 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of the advancement of functional and genetic studies in the late 1980s and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body.
Abstract: The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a “receptive substance,” from which the idea of a “receptor” came to light. Subsequent studies...

1,561 citations