scispace - formally typeset
Search or ask a question
Author

Manan Raval

Bio: Manan Raval is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Phased-array optics & Phased array. The author has an hindex of 9, co-authored 31 publications receiving 706 citations. Previous affiliations of Manan Raval include University of Illinois at Urbana–Champaign.

Papers
More filters
Journal ArticleDOI
TL;DR: This first demonstration of coherent solid-state light detection and ranging (LIDAR) using optical phased arrays in a silicon photonics platform is presented and paves the way for disruptive low-cost and compact LIDAR on-chip technology.
Abstract: We present, to the best of our knowledge, the first demonstration of coherent solid-state light detection and ranging (LIDAR) using optical phased arrays in a silicon photonics platform. An integrated transmitting and receiving frequency-modulated continuous-wave circuit was initially developed and tested to confirm on-chip ranging. Simultaneous distance and velocity measurements were performed using triangular frequency modulation. Transmitting and receiving optical phased arrays were added to the system for on-chip beam collimation, and solid-state beam steering and ranging measurements using this system are shown. A cascaded optical phase shifter architecture with multiple groups was used to simplify system control and allow for a compact packaged device. This system was fabricated within a 300 mm wafer CMOS-compatible platform and paves the way for disruptive low-cost and compact LIDAR on-chip technology.

492 citations

Journal ArticleDOI
TL;DR: Using the same silicon nitride platform and phased array architecture, it is demonstrated that the first large-aperture visible nanophotonic phased array at 635 nm with an aperture size of 0.064°×0.074° is demonstrated, to the best of the authors' knowledge.
Abstract: We demonstrate passive large-scale nanophotonic phased arrays in a CMOS-compatible silicon photonic platform. Silicon nitride waveguides are used to allow for higher input power and lower phase variation compared to a silicon-based distribution network. A phased array at an infrared wavelength of 1550 nm is demonstrated with an ultra-large aperture size of 4 mm×4 mm, achieving a record small and near diffraction-limited spot size of 0.021°×0.021° with a side lobe suppression of 10 dB. A main beam power of 400 mW is observed. Using the same silicon nitride platform and phased array architecture, we also demonstrate, to the best of our knowledge, the first large-aperture visible nanophotonic phased array at 635 nm with an aperture size of 0.5 mm×0.5 mm and a spot size of 0.064°×0.074°.

244 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate millimeter-scale optical waveguide grating antennas with unidirectional emission for integrated optical phased arrays, which eliminates the fundamental problem of blind spots in the element factor of a phased array caused by reflections of antenna radiation within the substrate.
Abstract: We demonstrate millimeter-scale optical waveguide grating antennas with unidirectional emission for integrated optical phased arrays. Unidirectional emission eliminates the fundamental problem of blind spots in the element factor of a phased array caused by reflections of antenna radiation within the substrate. Over 90% directionality is demonstrated using a design consisting of two silicon nitride layers. Furthermore, the perturbation strength along the antenna is apodized to achieve uniform emission for the first time, to the best of our knowledge, on a millimeter scale. This allows for a high effective aperture and receiving efficiency. The emission profile of the measured 3 mm long antenna has a standard deviation of 8.65% of the mean. These antennas are state of the art and will allow for integrated optical phased arrays with blind-spot-free high transmission output power and high receiving efficiency for LIDAR and free-space communication systems.

84 citations

Journal ArticleDOI
TL;DR: A chip-scale autostereoscopic image projection system that utilizes a system of multiple integrated visible light optical phased arrays to reconstruct virtual light fields to reconstruct reality with continuous parallax observable by the human visual system is demonstrated.
Abstract: We demonstrate a chip-scale autostereoscopic image projection system that utilizes a system of multiple integrated visible light optical phased arrays to reconstruct virtual light fields Each phased array in this system serves as a micro-projector that illuminates the desired virtual object from a different angle This recreates the virtual object in space with continuous parallax observable by the human visual system In this work, a static virtual image with horizontal parallax and a viewing angle of 5° was generated with an array of 16 integrated silicon nitride phased arrays with a 635 nm operating wavelength Each phased array is comprised of 32×32 optical antennas with passively encoded relative phases The presented device demonstrates the promise of integrated visible light phased array platforms for implementing projection-based autostereoscopic displays in compact chip-scale platforms suitable for mobile devices

54 citations

Journal ArticleDOI
TL;DR: A design based on mode evolution is used to demonstrate CMOS-compatible dichroic filters with more than an octave bandwidth, sharp roll-off and transmissive short- and long-wavelength outputs.
Abstract: Many optical systems require broadband filters with sharp roll-offs for efficiently splitting or combining light across wide spectra. While free space dichroic filters can provide broadband selectivity, on-chip integration of these high-performance filters is crucial for the scalability of photonic applications in multi-octave interferometry, spectroscopy, and wideband wavelength-division multiplexing. Here we present the theory, design, and experimental characterization of integrated, transmissive, 1 × 2 port dichroic filters using spectrally selective waveguides. Mode evolution through adiabatic transitions in the demonstrated filters allows for single cutoff and flat-top responses with low insertion losses and octave-wide simulated bandwidths. Filters with cutoffs around 1550 and 2100 nm are fabricated on a silicon-on-insulator platform with standard complementary metal-oxide-semiconductor processes. A filter roll-off of 2.82 dB nm−1 is achieved while maintaining ultra-broadband operation. This new class of nanophotonic dichroic filters can lead to new paradigms in on-chip communications, sensing, imaging, optical synthesis, and display applications. Optical filters are an integral part of many optical devices and circuits. Here, Magden et al. use a design based on mode evolution to demonstrate CMOS-compatible dichroic filters with more than an octave bandwidth, sharp roll-off and transmissive short- and long-wavelength outputs

53 citations


Cited by
More filters
Book ChapterDOI
27 Jan 2010

878 citations

Journal ArticleDOI
30 Aug 2018-Nature
TL;DR: How optical metamaterials are expected to enhance the performance of the next generation of integrated photonic devices is reviewed, and some of the challenges encountered in the transition from concept demonstration to viable technology are explored.
Abstract: In the late nineteenth century, Heinrich Hertz demonstrated that the electromagnetic properties of materials are intimately related to their structure at the subwavelength scale by using wire grids with centimetre spacing to manipulate metre-long radio waves. More recently, the availability of nanometre-scale fabrication techniques has inspired scientists to investigate subwavelength-structured metamaterials with engineered optical properties at much shorter wavelengths, in the infrared and visible regions of the spectrum. Here we review how optical metamaterials are expected to enhance the performance of the next generation of integrated photonic devices, and explore some of the challenges encountered in the transition from concept demonstration to viable technology.

585 citations

Journal ArticleDOI
TL;DR: This first demonstration of coherent solid-state light detection and ranging (LIDAR) using optical phased arrays in a silicon photonics platform is presented and paves the way for disruptive low-cost and compact LIDAR on-chip technology.
Abstract: We present, to the best of our knowledge, the first demonstration of coherent solid-state light detection and ranging (LIDAR) using optical phased arrays in a silicon photonics platform. An integrated transmitting and receiving frequency-modulated continuous-wave circuit was initially developed and tested to confirm on-chip ranging. Simultaneous distance and velocity measurements were performed using triangular frequency modulation. Transmitting and receiving optical phased arrays were added to the system for on-chip beam collimation, and solid-state beam steering and ranging measurements using this system are shown. A cascaded optical phase shifter architecture with multiple groups was used to simplify system control and allow for a compact packaged device. This system was fabricated within a 300 mm wafer CMOS-compatible platform and paves the way for disruptive low-cost and compact LIDAR on-chip technology.

492 citations

Journal ArticleDOI
TL;DR: This Review summarizes the advances in integrated photonic quantum technologies and its demonstrated applications, including quantum communications, simulations of quantum chemical and physical systems, sampling algorithms, and linear-optic quantum information processing.
Abstract: Generations of technologies with fundamentally new information processing capabilities will emerge if microscopic physical systems can be controlled to encode, transmit, and process quantum information, at scale and with high fidelity. In the decade after its 2008 inception, the technology of integrated quantum photonics enabled the generation, processing, and detection of quantum states of light, at a steadily increasing scale and level of complexity. Using both established and advanced fabrication techniques, the field progressed from the demonstrations of fixed circuits comprising few components and operating on two photons, to programmable circuitry approaching 1000 components with integrated generation of multi-photon states. A continuation in this trend over the next decade would usher in a versatile platform for future quantum technologies. This Review summarises the advances in integrated photonic quantum technologies (materials, devices, and functionality), and its demonstrated on-chip applications including secure quantum communications, simulations of quantum physical and chemical systems, Boson sampling, and linear-optic quantum information processing.

433 citations

01 Jan 2002
TL;DR: In this article, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

360 citations