scispace - formally typeset
Search or ask a question
Author

Mandy Krumbiegel

Bio: Mandy Krumbiegel is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Exome sequencing & Medicine. The author has an hindex of 20, co-authored 38 publications receiving 1988 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: DC-SIGN and DC-SIGNR enhance infection mediated by the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus and might promote viral dissemination.
Abstract: The lectins DC-SIGN and DC-SIGNR can augment viral infection; however, the range of pathogens interacting with these attachment factors is incompletely defined. Here we show that DC-SIGN and DC-SIGNR enhance infection mediated by the glycoprotein (GP) of Marburg virus (MARV) and the S protein of severe acute respiratory syndrome coronavirus and might promote viral dissemination. SIGNR1, a murine DC-SIGN homologue, also enhanced infection driven by MARV and Ebola virus GP and could be targeted to assess the role of attachment factors in filovirus infection in vivo.

354 citations

Journal ArticleDOI
TL;DR: The results point to a central role of ACE2 in SARS-CoV infection and suggest a minor contribution of the cytoplasmic domain to receptor function, which is not important for receptor function.

257 citations

Journal ArticleDOI
30 Sep 2005-Virology
TL;DR: It is shown that LSECtin enhances infection driven by filovirus glycoproteins and the S protein of SARS coronavirus, but does not interact with human immunodeficiency virus type-1 and hepatitis C virus envelope proteins.

198 citations

Journal ArticleDOI
TL;DR: Evidence that SARS-CoV infection might not be limited to lung tissue and can be inhibited by the humoral immune response in infected patients is provided, and results show that viral pseudotyping can be employed for the analysis of SARS -CoV S function.
Abstract: The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia with a fatal outcome in approximately 10% of patients. SARS-CoV is not closely related to other coronaviruses but shares a similar genome organization. Entry of coronaviruses into target cells is mediated by the viral S protein. We functionally analyzed SARS-CoV S using pseudotyped lentiviral particles (pseudotypes). The SARS-CoV S protein was found to be expressed at the cell surface upon transient transfection. Coexpression of SARS-CoV S with human immunodeficiency virus-based reporter constructs yielded viruses that were infectious for a range of cell lines. Most notably, viral pseudotypes harboring SARS-CoV S infected hepatoma cell lines but not T- and B-cell lines. Infection of the hepatoma cell line Huh-7 was also observed with replication-competent SARS-CoV, indicating that hepatocytes might be targeted by SARS-CoV in vivo. Inhibition of vacuolar acidification impaired infection by SARS-CoV S-bearing pseudotypes, indicating that S-mediated entry requires low pH. Finally, infection by SARS-CoV S pseudotypes but not by vesicular stomatitis virus G pseudotypes was efficiently inhibited by a rabbit serum raised against SARS-CoV particles and by sera from SARS patients, demonstrating that SARS-CoV S is a target for neutralizing antibodies and that such antibodies are generated in SARS-CoV-infected patients. Our results show that viral pseudotyping can be employed for the analysis of SARS-CoV S function. Moreover, we provide evidence that SARS-CoV infection might not be limited to lung tissue and can be inhibited by the humoral immune response in infected patients.

191 citations

Journal ArticleDOI
TL;DR: Using exome sequencing as a first-line diagnostic approach in consanguineous families with neurodevelopmental disorders is recommended because of the high diagnostic yield of 36.8% and the possibility of identifying treatable diseases or the coexistence of several disease-causing variants.
Abstract: Importance Autosomal recessive inherited neurodevelopmental disorders are highly heterogeneous, and many, possibly most, of the disease genes are still unknown. Objectives To promote the identification of disease genes through confirmation of previously described genes and presentation of novel candidates and provide an overview of the diagnostic yield of exome sequencing in consanguineous families. Design, Setting, and Participants Autozygosity mapping in families and exome sequencing of index patients were performed in 152 consanguineous families (the parents descended from a same ancestor) with at least 1 offspring with intellectual disability (ID). The study was conducted from July 1, 2008, to June 30, 2015, and data analysis was conducted from July 1, 2015, to August 31, 2016. Results Of the 152 consanguineous families enrolled, 1 child (in 45 families [29.6%]) or multiple children (107 families [70.4%]) had ID; additional features were present in 140 of the families (92.1%). The mean (SD) age of the children was 10.3 (9.0) years, and 171 of 297 (57.6%) were male. In 109 families (71.7%), potentially protein-disrupting and clinically relevant variants were identified. Of these, a clear clinical genetic diagnosis was made in 56 families (36.8%) owing to 57 (likely) pathogenic variants in 50 genes already established in neurodevelopmental disorders (46 autosomal recessive, 2 X-linked, and 2 de novo) or in 7 previously proposed recessive candidates. In 5 of these families, potentially treatable disorders were diagnosed (mutations in PAH , CBS , MTHFR , CYP27A1 , and HIBCH ), and in 1 family, 2 disease-causing homozygous variants in different genes were identified. In another 48 families (31.6%), 52 convincing recessive variants in candidate genes that were not previously reported in regard to neurodevelopmental disorders were identified. Of these, 14 were homozygous and truncating in GRM7 , STX1A , CCAR2 , EEF1D , GALNT2 , SLC44A1 , LRRIQ3 , AMZ2 , CLMN , SEC23IP , INIP , NARG2 , FAM234B , and TRAP1 . The diagnostic yield was higher in individuals with severe ID (35 of 77 [45.5%]), in multiplex families (42 of 107 [39.3%]), in patients with additional features (30 of 70 [42.9%]), and in those with remotely related parents (15 of 34 [44.1%]). Conclusions and Relevance Because of the high diagnostic yield of 36.8% and the possibility of identifying treatable diseases or the coexistence of several disease-causing variants, using exome sequencing as a first-line diagnostic approach in consanguineous families with neurodevelopmental disorders is recommended. Furthermore, the literature is enriched with 52 convincing candidate genes that are awaiting confirmation in independent families.

164 citations


Cited by
More filters
Journal ArticleDOI
16 Apr 2020-Cell
TL;DR: It is demonstrated that SARS-CoV-2 uses the SARS -CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming, and it is shown that the sera from convalescent SARS patients cross-neutralized Sars-2-S-driven entry.

15,362 citations

Journal ArticleDOI
27 Nov 2003-Nature
TL;DR: It is found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells, indicating that ACE2 is a functional receptor for SARS-CoV.
Abstract: Spike (S) proteins of coronaviruses, including the coronavirus that causes severe acute respiratory syndrome (SARS), associate with cellular receptors to mediate infection of their target cells Here we identify a metallopeptidase, angiotensin-converting enzyme 2 (ACE2), isolated from SARS coronavirus (SARS-CoV)-permissive Vero E6 cells, that efficiently binds the S1 domain of the SARS-CoV S protein We found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells 293T cells transfected with ACE2, but not those transfected with human immunodeficiency virus-1 receptors, formed multinucleated syncytia with cells expressing S protein Furthermore, SARS-CoV replicated efficiently on ACE2-transfected but not mock-transfected 293T cells Finally, anti-ACE2 but not anti-ACE1 antibody blocked viral replication on Vero E6 cells Together our data indicate that ACE2 is a functional receptor for SARS-CoV

5,149 citations

Journal ArticleDOI
TL;DR: The concerted and coordinated response that contained SARS is a triumph for global public health and provides a new paradigm for the detection and control of future emerging infectious disease threats.
Abstract: The severe acute respiratory syndrome (SARS) is responsible for the first pandemic of the 21st century. Within months after its emergence in Guangdong Province in mainland China, it had affected more than 8000 patients and caused 774 deaths in 26 countries on five continents. It illustrated dramatically the potential of air travel and globalization for the dissemination of an emerging infectious disease and highlighted the need for a coordinated global response to contain such disease threats. We review the cause, epidemiology, and clinical features of the disease.

2,167 citations

Journal ArticleDOI
Carly G. K. Ziegler, Samuel J. Allon, Sarah K. Nyquist, Ian M. Mbano1, Vincent N. Miao, Constantine N. Tzouanas, Yuming Cao2, Ashraf S. Yousif3, Julia Bals3, Blake M. Hauser3, Blake M. Hauser4, Jared Feldman3, Jared Feldman4, Christoph Muus5, Christoph Muus4, Marc H. Wadsworth, Samuel W. Kazer, Travis K. Hughes, Benjamin Doran, G. James Gatter6, G. James Gatter5, G. James Gatter3, Marko Vukovic, Faith Taliaferro7, Faith Taliaferro5, Benjamin E. Mead, Zhiru Guo2, Jennifer P. Wang2, Delphine Gras8, Magali Plaisant9, Meshal Ansari, Ilias Angelidis, Heiko Adler, Jennifer M.S. Sucre10, Chase J. Taylor10, Brian M. Lin4, Avinash Waghray4, Vanessa Mitsialis7, Vanessa Mitsialis11, Daniel F. Dwyer11, Kathleen M. Buchheit11, Joshua A. Boyce11, Nora A. Barrett11, Tanya M. Laidlaw11, Shaina L. Carroll12, Lucrezia Colonna13, Victor Tkachev4, Victor Tkachev7, Christopher W. Peterson14, Christopher W. Peterson13, Alison Yu7, Alison Yu15, Hengqi Betty Zheng13, Hengqi Betty Zheng15, Hannah P. Gideon16, Caylin G. Winchell16, Philana Ling Lin7, Philana Ling Lin16, Colin D. Bingle17, Scott B. Snapper7, Scott B. Snapper11, Jonathan A. Kropski18, Jonathan A. Kropski10, Fabian J. Theis, Herbert B. Schiller, Laure-Emmanuelle Zaragosi9, Pascal Barbry9, Alasdair Leslie1, Alasdair Leslie19, Hans-Peter Kiem14, Hans-Peter Kiem13, JoAnne L. Flynn16, Sarah M. Fortune3, Sarah M. Fortune5, Sarah M. Fortune4, Bonnie Berger6, Robert W. Finberg2, Leslie S. Kean7, Leslie S. Kean4, Manuel Garber2, Aaron G. Schmidt4, Aaron G. Schmidt3, Daniel Lingwood3, Alex K. Shalek, Jose Ordovas-Montanes, Nicholas E. Banovich, Alvis Brazma, Tushar J. Desai, Thu Elizabeth Duong, Oliver Eickelberg, Christine S. Falk, Michael Farzan20, Ian A. Glass, Muzlifah Haniffa, Peter Horvath, Deborah T. Hung, Naftali Kaminski, Mark A. Krasnow, Malte Kühnemund, Robert Lafyatis, Haeock Lee, Sylvie Leroy, Sten Linnarson, Joakim Lundeberg, Kerstin B. Meyer, Alexander V. Misharin, Martijn C. Nawijn, Marko Nikolic, Dana Pe'er, Joseph E. Powell, Stephen R. Quake, Jay Rajagopal, Purushothama Rao Tata, Emma L. Rawlins, Aviv Regev, Paul A. Reyfman, Mauricio Rojas, Orit Rosen, Kourosh Saeb-Parsy, Christos Samakovlis, Herbert B. Schiller, Joachim L. Schultze, Max A. Seibold, Douglas P. Shepherd, Jason R. Spence, Avrum Spira, Xin Sun, Sarah A. Teichmann, Fabian J. Theis, Alexander M. Tsankov, Maarten van den Berge, Michael von Papen, Jeffrey A. Whitsett, Ramnik J. Xavier, Yan Xu, Kun Zhang 
28 May 2020-Cell
TL;DR: The data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.

1,911 citations

Journal ArticleDOI
TL;DR: The spleen enables it to remove older erythrocytes from the circulation and leads to the efficient removal of blood-borne microorganisms and cellular debris, which makes it the most important organ for antibacterial and antifungal immune reactivity.
Abstract: The spleen combines the innate and adaptive immune system in a uniquely organized way. The structure of the spleen enables it to remove older erythrocytes from the circulation and leads to the efficient removal of blood-borne microorganisms and cellular debris. This function, in combination with a highly organized lymphoid compartment, makes the spleen the most important organ for antibacterial and antifungal immune reactivity. A better understanding of the function of this complex organ has been gained from recent studies, as outlined in this Review article.

1,823 citations