scispace - formally typeset
Search or ask a question
Author

Manfred Pinkal

Bio: Manfred Pinkal is an academic researcher from Saarland University. The author has contributed to research in topics: Context (language use) & Natural language. The author has an hindex of 29, co-authored 106 publications receiving 4121 citations. Previous affiliations of Manfred Pinkal include University of Stuttgart & Fraunhofer Society.


Papers
More filters
Proceedings Article
27 Jul 2011
TL;DR: A robust method for collective disambiguation is presented, by harnessing context from knowledge bases and using a new form of coherence graph that significantly outperforms prior methods in terms of accuracy, with robust behavior across a variety of inputs.
Abstract: Disambiguating named entities in natural-language text maps mentions of ambiguous names onto canonical entities like people or places, registered in a knowledge base such as DBpedia or YAGO. This paper presents a robust method for collective disambiguation, by harnessing context from knowledge bases and using a new form of coherence graph. It unifies prior approaches into a comprehensive framework that combines three measures: the prior probability of an entity being mentioned, the similarity between the contexts of a mention and a candidate entity, as well as the coherence among candidate entities for all mentions together. The method builds a weighted graph of mentions and candidate entities, and computes a dense subgraph that approximates the best joint mention-entity mapping. Experiments show that the new method significantly outperforms prior methods in terms of accuracy, with robust behavior across a variety of inputs.

898 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: This paper generates a rich semantic representation of the visual content including e.g. object and activity labels and proposes to formulate the generation of natural language as a machine translation problem using the semantic representation as source language and the generated sentences as target language.
Abstract: Humans use rich natural language to describe and communicate visual perceptions. In order to provide natural language descriptions for visual content, this paper combines two important ingredients. First, we generate a rich semantic representation of the visual content including e.g. object and activity labels. To predict the semantic representation we learn a CRF to model the relationships between different components of the visual input. And second, we propose to formulate the generation of natural language as a machine translation problem using the semantic representation as source language and the generated sentences as target language. For this we exploit the power of a parallel corpus of videos and textual descriptions and adapt statistical machine translation to translate between our two languages. We evaluate our video descriptions on the TACoS dataset, which contains video snippets aligned with sentence descriptions. Using automatic evaluation and human judgments we show significant improvements over several baseline approaches, motivated by prior work. Our translation approach also shows improvements over related work on an image description task.

438 citations

Journal ArticleDOI
TL;DR: A general purpose corpus is presented that aligns high quality videos with multiple natural language descriptions of the actions portrayed in the videos, together with an annotation of how similar the action descriptions are to each other.
Abstract: Recent work has shown that the integration of visual information into text-based models can substantially improve model predictions, but so far only visual information extracted from static images has been used. In this paper, we consider the problem of grounding sentences describing actions in visual information extracted from videos . We present a general purpose corpus that aligns high quality videos with multiple natural language descriptions of the actions portrayed in the videos, together with an annotation of how similar the action descriptions are to each other. Experimental results demonstrate that a text-based model of similarity between actions improves substantially when combined with visual information from videos depicting the described actions.

404 citations

Book ChapterDOI
02 Sep 2014
TL;DR: This paper follows a two-step approach where it first learns to predict a semantic representation from video and then generates natural language descriptions from it, and model across-sentence consistency at the level of the SR by enforcing a consistent topic.
Abstract: Humans can easily describe what they see in a coherent way and at varying level of detail. However, existing approaches for automatic video description focus on generating only single sentences and are not able to vary the descriptions’ level of detail. In this paper, we address both of these limitations: for a variable level of detail we produce coherent multi-sentence descriptions of complex videos. To understand the difference between detailed and short descriptions, we collect and analyze a video description corpus of three levels of detail. We follow a two-step approach where we first learn to predict a semantic representation (SR) from video and then generate natural language descriptions from it. For our multi-sentence descriptions we model across-sentence consistency at the level of the SR by enforcing a consistent topic. Human judges rate our descriptions as more readable, correct, and relevant than related work.

244 citations

Proceedings Article
11 Aug 2010
TL;DR: A novel attack is presented that recovers what a dot-matrix printer processing English text is printing based on a record of the sound it makes, if the microphone is close enough to the printer.
Abstract: We examine the problemof acoustic emanations of printers We present a novel attack that recovers what a dot-matrix printer processing English text is printing based on a record of the sound it makes, if the microphone is close enough to the printer In our experiments, the attack recovers up to 72 % of printed words, and up to 95 % if we assume contextual knowledge about the text, with a microphone at a distance of 10cmfrom the printer After an upfront training phase, the attack is fully automated and uses a combination of machine learning, audio processing, and speech recognition techniques, including spectrum features, Hidden Markov Models and linear classification; moreover, it allows for feedback-based incremental learning We evaluate the effectiveness of countermeasures, and we describe how we successfully mounted the attack in-field (with appropriate privacy protections) in a doctor's practice to recover the content of medical prescriptions

181 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: A novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and shows such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.
Abstract: Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or “temporally deep”, are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are “doubly deep” in that they can be compositional in spatial and temporal “layers”. Such models may have advantages when target concepts are complex and/or training data are limited. Learning long-term dependencies is possible when nonlinearities are incorporated into the network state updates. Long-term RNN models are appealing in that they directly can map variable-length inputs (e.g., video frames) to variable length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be optimized with backpropagation. Our recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations. Our results show such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.

4,206 citations

Proceedings ArticleDOI
04 Mar 2016
TL;DR: Comunicacio presentada a la 2016 Conference of the North American Chapter of the Association for Computational Linguistics, celebrada a San Diego (CA, EUA) els dies 12 a 17 of juny 2016.
Abstract: Comunicacio presentada a la 2016 Conference of the North American Chapter of the Association for Computational Linguistics, celebrada a San Diego (CA, EUA) els dies 12 a 17 de juny 2016.

3,960 citations

Posted Content
TL;DR: A novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and shows such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.
Abstract: Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are "doubly deep"' in that they can be compositional in spatial and temporal "layers". Such models may have advantages when target concepts are complex and/or training data are limited. Learning long-term dependencies is possible when nonlinearities are incorporated into the network state updates. Long-term RNN models are appealing in that they directly can map variable-length inputs (e.g., video frames) to variable length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be optimized with backpropagation. Our recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations. Our results show such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.

3,935 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: The task of free-form and open-ended Visual Question Answering (VQA) is proposed, given an image and a natural language question about the image, the task is to provide an accurate natural language answer.
Abstract: We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines for VQA are provided and compared with human performance.

3,513 citations