scispace - formally typeset
Search or ask a question
Author

Manfred Thumm

Bio: Manfred Thumm is an academic researcher from Karlsruhe Institute of Technology. The author has contributed to research in topics: Gyrotron & Stellarator. The author has an hindex of 53, co-authored 923 publications receiving 12018 citations. Previous affiliations of Manfred Thumm include National Technical University of Athens & Forschungszentrum Jülich.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present state-of-the-art passive high-power microwave components for applications in microwave systems for RF plasma generation and heating, plasma diagnostics, plasma and microwave materials processing, spectroscopy, communication, radar ranging and imaging, and for drivers of next generation high-field-gradient electron-positron linear colliders.
Abstract: This review discusses the present state-of-the-art of passive high-power microwave components for applications in microwave systems for RF plasma generation and heating, plasma diagnostics, plasma and microwave materials processing, spectroscopy, communication, radar ranging and imaging, and for drivers of next generation high-field-gradient electron-positron linear colliders. The paper reports on high-power components for overmoded high-power transmission systems such as smooth-wall waveguides, HE/sub 11/ hybrid mode waveguides and quasi-optical TEM/sub 00/ beam waveguides. These include various types of mode converters, polarizers, cross-section tapers, bends, mode selective filters, pulse compressors, DC-breaks, directional couplers, beam combiners and dividers, vacuum windows, and instruments for mode analysis. Problems of ohmic attenuation and unwanted conversion to parasitic modes are discussed in detail and rules for alignment requirements are given. In the case of waveguide transmission, this review mainly concentrates on circular waveguide components but also deals with rectangular waveguide.

281 citations

Journal ArticleDOI
TL;DR: A review of the development of high-power gyrotron oscillators for long-pulse or CW operation and pulsed gyrotrons for many applications can be found in this article.
Abstract: This paper presents a review of the experimental achievements related to the development of high-power gyrotron oscillators for long-pulse or CW operation and pulsed gyrotrons for many applications. In addition, this work gives a short overview on the present development status of frequency step-tunable and multi-frequency gyrotrons, coaxial-cavity multi-megawatt gyrotrons, gyrotrons for technological and spectroscopy applications, relativistic gyrotrons, large orbit gyrotrons (LOGs), quasi-optical gyrotrons, fast- and slow-wave cyclotron autoresonance masers (CARMs), gyroklystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWOs, gyro-harmonic converters, gyro-peniotrons, magnicons, free electron masers (FEMs), and dielectric vacuum windows for such high-power mm-wave sources. Gyrotron oscillators (gyromonotrons) are mainly used as high-power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control, and diagnostics of magnetically confined plasmas for clean generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 140 GHz, megawatt-class gyrotrons employing synthetic diamond output windows is 30 min (CPI and European KIT-SPC-THALES collaboration). The world record parameters of the European tube are as follows: 0.92 MW output power at 30-min pulse duration, 97.5% Gaussian mode purity, and 44% efficiency, employing a single-stage depressed collector (SDC) for energy recovery. A maximum output power of 1.5 MW in 4.0-s pulses at 45% efficiency was generated with the QST-TOSHIBA (now CANON) 110-GHz gyrotron. The Japan 170-GHz ITER gyrotron achieved 1 MW, 800 s at 55% efficiency and holds the energy world record of 2.88 GJ (0.8 MW, 60 min) and the efficiency record of 57% for tubes with an output power of more than 0.5 MW. The Russian 170-GHz ITER gyrotron obtained 0.99 (1.2) MW with a pulse duration of 1000 (100) s and 53% efficiency. The prototype tube of the European 2-MW, 170-GHz coaxial-cavity gyrotron achieved in short pulses the record power of 2.2 MW at 48% efficiency and 96% Gaussian mode purity. Gyrotrons with pulsed magnet for various short-pulse applications deliver Pout = 210 kW with τ = 20 μs at frequencies up to 670 GHz (η ≅ 20%), Pout = 5.3 kW at 1 THz (η = 6.1%), and Pout = 0.5 kW at 1.3 THz (η = 0.6%). Gyrotron oscillators have also been successfully used in materials processing. Such technological applications require tubes with the following parameters: f > 24 GHz, Pout = 4–50 kW, CW, η > 30%. The CW powers produced by gyroklystrons and FEMs are 10 kW (94 GHz) and 36 W (15 GHz), respectively. The IR FEL at the Thomas Jefferson National Accelerator Facility in the USA obtained a record average power of 14.2 kW at a wavelength of 1.6 μm. The THz FEL (NOVEL) at the Budker Institute of Nuclear Physics in Russia achieved a maximum average power of 0.5 kW at wavelengths 50–240 μm (6.00–1.25 THz).

279 citations

Book
17 Nov 2003
TL;DR: In this article, basic principles and gyrotron cavities are discussed and a detailed calculation of RF behavior behavior behavior is presented, along with practical considerations for Gyrotron design.
Abstract: 1 Introduction.- 3 Basic Principles and Gyrotron Cavities.- 4 Calculation of RF Behaviour.- 5 Practical Considerations for Gyrotron Design.- 6 Electron Optical and Guiding System.- 7 Output Taper and Quasi-optical Launcher.- 8 RF Window.- 9 Examples.- 10 Applications.- References.

275 citations

Journal ArticleDOI
TL;DR: The Wendelstein 7X (W7-X) stellarator as mentioned in this paper, which at present is being built at Max-Planck-Institut fur Plasmaphysik, Greifswald, aims at demonstrating the inherent inherent ste...
Abstract: The Wendelstein 7X (W7-X) stellarator (R = 5.5 m, a = 0.55 m, B < 3.0 T), which at present is being built at Max-Planck-Institut fur Plasmaphysik, Greifswald, aims at demonstrating the inherent ste...

180 citations

Journal ArticleDOI
TL;DR: A review of the development and the present state-of-the-art of gyrotrons for controlled thermonuclear fusion plasma applications can be found in this paper, where the first gyrotron was invented, designed and tested in Gorky, USSR (now Nizhny Novgorod, Russia), in 1964.
Abstract: Gyrotrons form a specific group of devices in the class of fast-wave vacuum electronic sources of coherent electromagnetic wave radiation known as electron cyclotron masers (ECMs) or cyclotron resonance masers (CRMs). The operation of CRMs is based on the cyclotron maser instability which originates from the relativistic dependence of the electron cyclotron frequency on the electron energy. This relativistic effect can be pronounced even at low voltages when the electron kinetic energy is small in comparison with the rest energy. The free energy for generation of electromagnetic (EM) waves is the energy of electron gyration in an external magnetic field. As in any fast-wave device, the EM field in a gyrotron interaction space is not localized near a circuit wall (like in slow-wave devices), but can occupy large volumes. Due to possibilities of using various methods of mode selection (electrodynamical and electronic ones), gyrotrons can operate in very high order modes. Since the use of large, oversized cavities and waveguides reduces the role of ohmic wall losses and breakdown limitations, gyrotrons are capable of producing very high power radiation at millimeter and submillimeter wavelengths. The present review is restricted primarily by the description of the development and the present state-of-the-art of gyrotrons for controlled thermonuclear fusion plasma applications. The first gyrotron was invented, designed and tested in Gorky, USSR (now Nizhny Novgorod, Russia), in 1964.

177 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this paper, the capabilities for vacuum electronic device (VED) sources of powerful terahertz (THz) and near-THz coherent radiation, both CW or average and pulsed, were evaluated.
Abstract: Recent research and development has been incredibly successful at advancing the capabilities for vacuum electronic device (VED) sources of powerful terahertz (THz) and near-THz coherent radiation, both CW or average and pulsed. Currently, the VED source portfolio covers over 12 orders of magnitude in power (mW-to-GW) and two orders of magnitude in frequency (from ; 10 THz). Further advances are still possible and anticipated. They will be enabled by improved understanding of fundamental beam-wave interactions, electromagnetic mode competition and mode control, along with research and development of new materials, fabrication methods, cathodes, electron beam alignment and focusing, magnet technologies, THz metrology and advanced, broadband output radiation coupling techniques.

860 citations

Journal ArticleDOI
TL;DR: This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (> or =5 T), the regime where contemporary NMR experiments are performed.
Abstract: Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (microw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (gamma(e)gamma(l)), being approximately 660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (> or =5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms-the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in microw and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments.

777 citations