scispace - formally typeset
Search or ask a question
Author

Manickam Neelakandan

Bio: Manickam Neelakandan is an academic researcher from United States Department of the Army. The author has contributed to research in topics: Supercontinuum & Diffuse reflectance infrared fourier transform. The author has an hindex of 3, co-authored 3 publications receiving 335 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a mid-IR supercontinuum (SC) fiber laser based on a thulium-doped fiber amplifier (TDFA) is demonstrated with a continuous spectrum extending from ∼1.9 to 4.5 μm.
Abstract: A mid-IR supercontinuum (SC) fiber laser based on a thulium-doped fiber amplifier (TDFA) is demonstrated. A continuous spectrum extending from ∼1.9 to 4.5 μm is generated with ∼0.7 W time-average power in wavelengths beyond 3.8 μm. The laser outputs a total average power of up to ∼2.6 W from ∼8.5 m length of ZrF4─BaF2─LaF3─AlF3─NaF (ZBLAN) fiber, with an optical conversion efficiency of ∼9% from the TDFA pump to the mid-IR SC. Optimal efficiency in generating wavelengths beyond 3.8 μm is achieved by reducing the losses in the TDFA stage and optimizing the ZBLAN fiber length. We demonstrate a novel (to our knowledge) approach of generating modulation instability-initiated SC starting from 1.55 μm by splitting the spectral shifting process into two steps. In the first step, amplified approximately nanosecond-long 1.55 μm laser diode pulses with ∼2.5 kW peak power generate a SC extending beyond 2.1 μm in ∼25 m length of standard single-mode fiber (SMF). The ∼2 μm wavelength components at the standard SMF output are amplified in a TDFA and coupled into ZBLAN fiber leading to mid-IR SC generation. Up to ∼270 nm SC long wavelength edge extension and ∼2.5× higher optical conversion efficiency to wavelengths beyond 3.8 μm are achieved by switching an Er:Yb-based power amplifier stage with a TDFA. The laser also demonstrates scalability in the average output power with respect to the pulse repetition rate and the amplifier pump power. Numerical simulations are performed by solving the generalized nonlinear Schrodinger equation, which show the long wavelength edge of the SC to be limited by the loss in ZBLAN.

154 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the diffuse reflection spectrum of solid samples such as explosives (TNT, RDX, PETN), fertilizers (ammonium nitrate, urea), and paints (automotive and military grade) at a stand-off distance of 5m using a mid-infrared supercontinuum light source with 3.9 W average output power.
Abstract: We measure the diffuse reflection spectrum of solid samples such as explosives (TNT, RDX, PETN), fertilizers (ammonium nitrate, urea), and paints (automotive and military grade) at a stand-off distance of 5 m using a mid-infrared supercontinuum light source with 3.9 W average output power. The output spectrum extends from 750–4300 nm, and it is generated by nonlinear spectral broadening in a 9 m long fluoride fiber pumped by high peak power pulses from a dual-stage erbium-ytterbium fiber amplifier operating at 1543 nm. The samples are distinguished using unique spectral signatures that are attributed to the molecular vibrations of the constituents. Signal-to-noise ratio (SNR) calculations demonstrate the feasibility of increasing the stand-off distance from 5 to ∼150 m, with a corresponding drop in SNR from 28 to 10 dB.

124 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a high average power, all-fiber integrated, broadband supercontinuum (SC) sources using amplified picosecond/nanosecond laser diode (LD) pulses followed by modulation instability induced pulse breakup is presented and used to demonstrate SC sources from the mid-IR to the visible wavelengths.

86 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review summarizes the different rare-earth cations and host materials used in mid-infrared fiber laser technology, and discusses the future applications and challenges for the field.
Abstract: Fibre lasers in the mid-infrared regime are useful for a diverse range of fields, including chemical and biomedical sensing, military applications and materials processing. This Review summarizes the different rare-earth cations and host materials used in mid-infrared fibre laser technology, and discusses the future applications and challenges for the field.

974 citations

01 Jan 2002
TL;DR: In this article, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

360 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the recent trends and developments of infrared and Raman spectroscopy applied to the identification of explosives that have been published over the past decade focusing on the different fields where explosives were studied: homeland and international security, forensics, environmental, characterization of explosives, trace detection and fluorescence-free Raman analysis of explosives.
Abstract: This review summarizes the recent trends and developments of infrared and Raman spectroscopy applied to the identification of explosives that have been published over the past decade, focusing on the different fields where explosives were studied: homeland and international security, forensics, environmental, characterization of explosives, trace detection and fluorescence-free Raman analysis of explosives.

179 citations

Journal ArticleDOI
TL;DR: Yu et al. as mentioned in this paper acknowledge the financial support from the China Scholarship Council for their PhD in computer vision and acknowledge the support of the ARC DECRA project for Ultrahigh Bandwidth Devices for Optical Systems (CE110001018).
Abstract: Yi Yu acknowledges the financial support from the China Scholarship Council for her PhD Scholarship No. 201206110048. This research was conducted by the Australian Research Council Centre of Excellence for Ultrahigh Bandwidth Devices for Optical Systems (project number CE110001018). Dr Zhiyong Yang is supported by ARC DECRA project DE120101036 and Dr Duk-Yong Choi by ARC Future Fellowship FT110100853.

178 citations

Journal ArticleDOI
TL;DR: In this article, a broadband supercontinuum spanning from 1.8 μm to >7.5 μm is reported which was created by pumping a chalcogenide glass waveguide with ≈320fs pulses at 4 μm.
Abstract: The production of a broadband supercontinuum spanning from 1.8 μm to >7.5 μm is reported which was created by pumping a chalcogenide glass waveguide with ≈320 fs pulses at 4 μm. The total power was ≈20 mW and the source brightness was >×100 that of current synchrotrons. This source promises to be an excellent laboratory tool for infrared microspectroscopy.

163 citations