scispace - formally typeset
Search or ask a question
Author

Manish Kumar

Bio: Manish Kumar is an academic researcher from National Environmental Engineering Research Institute. The author has contributed to research in topics: Biorefinery & Biochar. The author has an hindex of 17, co-authored 34 publications receiving 954 citations. Previous affiliations of Manish Kumar include Hong Kong Polytechnic University & École Polytechnique Fédérale de Lausanne.

Papers
More filters
Journal ArticleDOI
TL;DR: This study comprehensively reviews the sources, fate, and dispersion of MPs in the soil environment, discusses the interactions and effects of MPs on soil biota, and highlights the recent advancements in detection and quantification methods of MPs.

299 citations

Journal ArticleDOI
TL;DR: The variety of processes and pathways through which bio-valorization of algal biomass can be performed are described in this review and the biorefinery model and its collaborative approach with various processes are highlighted for the production of eco-friendly, sustainable, and cost-effective biofuels and value-added products.

273 citations

Journal ArticleDOI
TL;DR: This review critically evaluates the synthesis, characterization, and application of ball-milled biochar nanomaterials based on the latest findings and offers insights into opportunities and future prospects related to sustainable and facile synthesis of biochar-based novel materials for achieving sustainable development goals.

255 citations

Journal ArticleDOI
TL;DR: Biochar is produced as a charred material with high surface area and abundant functional groups by pyrolysis, which refers to the process of thermochemical decomposition of organic material at elev...
Abstract: Biochar is produced as a charred material with high surface area and abundant functional groups by pyrolysis, which refers to the process of thermochemical decomposition of organic material at elev...

204 citations

Journal ArticleDOI
TL;DR: In this article, a review scrutinizes the key roles of biochar as an additive and emphasizes the influences of bio-char characteristics on the anaerobic digestion processes and their capability to address the foremost challenges.

203 citations


Cited by
More filters
Journal ArticleDOI
07 Nov 2019-Nature
TL;DR: The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere, but barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways.
Abstract: The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere. Here we review ten pathways for the utilization of carbon dioxide. Pathways that involve chemicals, fuels and microalgae might reduce emissions of carbon dioxide but have limited potential for its removal, whereas pathways that involve construction materials can both utilize and remove carbon dioxide. Land-based pathways can increase agricultural output and remove carbon dioxide. Our assessment suggests that each pathway could scale to over 0.5 gigatonnes of carbon dioxide utilization annually. However, barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways. Ten pathways for the utilization of carbon dioxide are reviewed, considering their potential scale, economics and barriers to implementation.

879 citations

01 Jan 2015
TL;DR: In this paper, the authors meta-analyzed the biochar decomposition in soil and estimated its mean residence time (MRT), and concluded that only a small part of biochar is bioavailable and that the remaining 97% contribute directly to long-term carbon sequestration in soil.
Abstract: The stability and decomposition of biochar are fundamental to understand its persistence in soil, its contribution to carbon (C) sequestration, and thus its role in the global C cycle. Our current knowledge about the degradability of biochar, however, is limited. Using 128 observations of biochar‐derived CO2 from 24 studies with stable (13C) and radioactive (14C) carbon isotopes, we meta‐analyzed the biochar decomposition in soil and estimated its mean residence time (MRT). The decomposed amount of biochar increased logarithmically with experimental duration, and the decomposition rate decreased with time. The biochar decomposition rate varied significantly with experimental duration, feedstock, pyrolysis temperature, and soil clay content. The MRTs of labile and recalcitrant biochar C pools were estimated to be about 108 days and 556 years with pool sizes of 3% and 97%, respectively. These results show that only a small part of biochar is bioavailable and that the remaining 97% contribute directly to long‐term C sequestration in soil. The second database (116 observations from 21 studies) was used to evaluate the priming effects after biochar addition. Biochar slightly retarded the mineralization of soil organic matter (SOM; overall mean: −3.8%, 95% CI = −8.1–0.8%) compared to the soil without biochar addition. Significant negative priming was common for studies with a duration shorter than half a year (−8.6%), crop‐derived biochar (−20.3%), fast pyrolysis (−18.9%), the lowest pyrolysis temperature (−18.5%), and small application amounts (−11.9%). In contrast, biochar addition to sandy soils strongly stimulated SOM mineralization by 20.8%. This indicates that biochar stimulates microbial activities especially in soils with low fertility. Furthermore, abiotic and biotic processes, as well as the characteristics of biochar and soils, affecting biochar decomposition are discussed. We conclude that biochar can persist in soils on a centennial scale and that it has a positive effect on SOM dynamics and thus on C sequestration.

418 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the formation of plastic fragments, which are considered as microplastics when their size is larger than 1.5 µm and their exposure in the environment causes deterioration in mechanical and physicochemical properties.

337 citations

Journal ArticleDOI
TL;DR: It is suggested that the lignocellulosic biomass is an outstanding candidate, wood and woody biomass in particular, and moderate temperatures (400-700 °C) are suitable for the development of the pore structure.

330 citations