scispace - formally typeset
Search or ask a question
Author

Manish Narwaria

Bio: Manish Narwaria is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Tone mapping & Human visual system model. The author has an hindex of 19, co-authored 41 publications receiving 1828 citations. Previous affiliations of Manish Narwaria include Nanyang Technological University & University of Nantes.

Papers
More filters
Journal ArticleDOI
TL;DR: The proposed IQA scheme is designed to follow the masking effect and visibility threshold more closely, i.e., the case when both masked and masking signals are small is more effectively tackled by the proposed scheme.
Abstract: In this paper, we propose a new image quality assessment (IQA) scheme, with emphasis on gradient similarity. Gradients convey important visual information and are crucial to scene understanding. Using such information, structural and contrast changes can be effectively captured. Therefore, we use the gradient similarity to measure the change in contrast and structure in images. Apart from the structural/contrast changes, image quality is also affected by luminance changes, which must be also accounted for complete and more robust IQA. Hence, the proposed scheme considers both luminance and contrast-structural changes to effectively assess image quality. Furthermore, the proposed scheme is designed to follow the masking effect and visibility threshold more closely, i.e., the case when both masked and masking signals are small is more effectively tackled by the proposed scheme. Finally, the effects of the changes in luminance and contrast-structure are integrated via an adaptive method to obtain the overall image quality score. Extensive experiments conducted with six publicly available subject-rated databases (comprising of diverse images and distortion types) have confirmed the effectiveness, robustness, and efficiency of the proposed scheme in comparison with the relevant state-of-the-art schemes.

663 citations

Journal ArticleDOI
TL;DR: The main contribution is toward improving the frequency-based pooling in HDR-VDP-2 to enhance its objective quality prediction accuracy by formulating and solving a constrained optimization problem and thereby finding the optimal pooling weights.
Abstract: With the emergence of high-dynamic range (HDR) imaging, the existing visual signal processing systems will need to deal with both HDR and standard dynamic range (SDR) signals. In such systems, computing the objective quality is an important aspect in various optimization processes (e.g., video encoding). To that end, we present a newly calibrated objective method that can tackle both HDR and SDR signals. As it is based on the previously proposed HDR-VDP-2 method, we refer to the newly calibrated metric as HDR-VDP-2.2. Our main contribution is toward improving the frequency-based pooling in HDR-VDP-2 to enhance its objective quality prediction accuracy. We achieve this by formulating and solving a constrained optimization problem and thereby finding the optimal pooling weights. We also carried out extensive cross-validation as well as verified the performance of the new method on independent databases. These indicate clear improvement in prediction accuracy as compared with the default pooling weights. The source codes for HDR-VDP-2.2 are publicly available online for free download and use.

170 citations

Journal ArticleDOI
TL;DR: A new stereoscopic saliency detection framework based on the feature contrast of color, intensity, texture, and depth, which shows superior performance over other existing ones in saliency estimation for 3D images is proposed.
Abstract: Many saliency detection models for 2D images have been proposed for various multimedia processing applications during the past decades. Currently, the emerging applications of stereoscopic display require new saliency detection models for salient region extraction. Different from saliency detection for 2D images, the depth feature has to be taken into account in saliency detection for stereoscopic images. In this paper, we propose a novel stereoscopic saliency detection framework based on the feature contrast of color, luminance, texture, and depth. Four types of features, namely color, luminance, texture, and depth, are extracted from discrete cosine transform coefficients for feature contrast calculation. A Gaussian model of the spatial distance between image patches is adopted for consideration of local and global contrast calculation. Then, a new fusion method is designed to combine the feature maps to obtain the final saliency map for stereoscopic images. In addition, we adopt the center bias factor and human visual acuity, the important characteristics of the human visual system, to enhance the final saliency map for stereoscopic images. Experimental results on eye tracking databases show the superior performance of the proposed model over other existing methods.

166 citations

Journal ArticleDOI
TL;DR: A new approach to address the problem of objective image quality estimation, with the use of singular vectors out of singular value decomposition (SVD) as features for quantifying major structural information in images and then support vector regression (SVR) for automatic prediction of image quality.
Abstract: Objective image quality estimation is useful in many visual processing systems, and is difficult to perform in line with the human perception. The challenge lies in formulating effective features and fusing them into a single number to predict the quality score. In this brief, we propose a new approach to address the problem, with the use of singular vectors out of singular value decomposition (SVD) as features for quantifying major structural information in images and then support vector regression (SVR) for automatic prediction of image quality. The feature selection with singular vectors is novel and general for gauging structural changes in images as a good representative of visual quality variations. The use of SVR exploits the advantages of machine learning with the ability to learn complex data patterns for an effective and generalized mapping of features into a desired score, in contrast with the oft-utilized feature pooling process in the existing image quality estimators; this is to overcome the difficulty of model parameter determination for such a system to emulate the related, complex human visual system (HVS) characteristics. Experiments conducted with three independent databases confirm the effectiveness of the proposed system in predicting image quality with better alignment with the HVS's perception than the relevant existing work. The tests with untrained distortions and databases further demonstrate the robustness of the system and the importance of the feature selection.

146 citations

Journal ArticleDOI
01 Apr 2012
TL;DR: The two-stage process and the relevant work in the existing visual quality metrics are first introduced followed by an in-depth analysis of SVD for visual quality assessment, which shows the proposed method outperforms the eight existing relevant schemes.
Abstract: We study the use of machine learning for visual quality evaluation with comprehensive singular value decomposition (SVD)-based visual features. In this paper, the two-stage process and the relevant work in the existing visual quality metrics are first introduced followed by an in-depth analysis of SVD for visual quality assessment. Singular values and vectors form the selected features for visual quality assessment. Machine learning is then used for the feature pooling process and demonstrated to be effective. This is to address the limitations of the existing pooling techniques, like simple summation, averaging, Minkowski summation, etc., which tend to be ad hoc. We advocate machine learning for feature pooling because it is more systematic and data driven. The experiments show that the proposed method outperforms the eight existing relevant schemes. Extensive analysis and cross validation are performed with ten publicly available databases (eight for images with a total of 4042 test images and two for video with a total of 228 videos). We use all publicly accessible software and databases in this study, as well as making our own software public, to facilitate comparison in future research.

142 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Despite its simplicity, it is able to show that BRISQUE is statistically better than the full-reference peak signal-to-noise ratio and the structural similarity index, and is highly competitive with respect to all present-day distortion-generic NR IQA algorithms.
Abstract: We propose a natural scene statistic-based distortion-generic blind/no-reference (NR) image quality assessment (IQA) model that operates in the spatial domain. The new model, dubbed blind/referenceless image spatial quality evaluator (BRISQUE) does not compute distortion-specific features, such as ringing, blur, or blocking, but instead uses scene statistics of locally normalized luminance coefficients to quantify possible losses of “naturalness” in the image due to the presence of distortions, thereby leading to a holistic measure of quality. The underlying features used derive from the empirical distribution of locally normalized luminances and products of locally normalized luminances under a spatial natural scene statistic model. No transformation to another coordinate frame (DCT, wavelet, etc.) is required, distinguishing it from prior NR IQA approaches. Despite its simplicity, we are able to show that BRISQUE is statistically better than the full-reference peak signal-to-noise ratio and the structural similarity index, and is highly competitive with respect to all present-day distortion-generic NR IQA algorithms. BRISQUE has very low computational complexity, making it well suited for real time applications. BRISQUE features may be used for distortion-identification as well. To illustrate a new practical application of BRISQUE, we describe how a nonblind image denoising algorithm can be augmented with BRISQUE in order to perform blind image denoising. Results show that BRISQUE augmentation leads to performance improvements over state-of-the-art methods. A software release of BRISQUE is available online: http://live.ece.utexas.edu/research/quality/BRISQUE_release.zip for public use and evaluation.

3,780 citations

Journal ArticleDOI
TL;DR: It is found that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality.
Abstract: It is an important task to faithfully evaluate the perceptual quality of output images in many applications, such as image compression, image restoration, and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy, but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm.

1,211 citations

Journal ArticleDOI
TL;DR: A systematic, comprehensive and up-to-date review of perceptual visual quality metrics (PVQMs) to predict picture quality according to human perception.

895 citations

Journal ArticleDOI
TL;DR: Extensive experiments performed on four largescale benchmark databases demonstrate that the proposed IQA index VSI works better in terms of the prediction accuracy than all state-of-the-art IQA indices the authors can find while maintaining a moderate computational complexity.
Abstract: Perceptual image quality assessment (IQA) aims to use computational models to measure the image quality in consistent with subjective evaluations. Visual saliency (VS) has been widely studied by psychologists, neurobiologists, and computer scientists during the last decade to investigate, which areas of an image will attract the most attention of the human visual system. Intuitively, VS is closely related to IQA in that suprathreshold distortions can largely affect VS maps of images. With this consideration, we propose a simple but very effective full reference IQA method using VS. In our proposed IQA model, the role of VS is twofold. First, VS is used as a feature when computing the local quality map of the distorted image. Second, when pooling the quality score, VS is employed as a weighting function to reflect the importance of a local region. The proposed IQA index is called visual saliency-based index (VSI). Several prominent computational VS models have been investigated in the context of IQA and the best one is chosen for VSI. Extensive experiments performed on four large-scale benchmark databases demonstrate that the proposed IQA index VSI works better in terms of the prediction accuracy than all state-of-the-art IQA indices we can find while maintaining a moderate computational complexity. The MATLAB source code of VSI and the evaluation results are publicly available online at http://sse.tongji.edu.cn/linzhang/IQA/VSI/VSI.htm.

823 citations

Posted Content
TL;DR: In this article, a gradient magnitude similarity deviation (GMSD) method was proposed for image quality assessment, where the pixel-wise GMS between the reference and distorted images was combined with a novel pooling strategy to predict accurately perceptual image quality.
Abstract: It is an important task to faithfully evaluate the perceptual quality of output images in many applications such as image compression, image restoration and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy the standard deviation of the GMS map can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy.

742 citations