scispace - formally typeset
Search or ask a question
Author

Manolis Gavaises

Bio: Manolis Gavaises is an academic researcher from City University London. The author has contributed to research in topics: Cavitation & Nozzle. The author has an hindex of 41, co-authored 214 publications receiving 5955 citations. Previous affiliations of Manolis Gavaises include University of Roehampton & Imperial College London.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that viscoelasticity can reduce turbulence and suppress cavitation, and subsequently increase the injector’s volumetric efficiency.
Abstract: We identify the physical mechanism through which newly developed quaternary ammonium salt (QAS) deposit control additives (DCAs) affect the rheological properties of cavitating turbulent flows, resulting in an increase in the volumetric efficiency of clean injectors fuelled with diesel or biodiesel fuels. Quaternary ammonium surfactants with appropriate counterions can be very effective in reducing the turbulent drag in aqueous solutions, however, less is known about the effect of such surfactants in oil-based solvents or in cavitating flow conditions. Small-angle neutron scattering (SANS) investigations show that in traditional DCA fuel compositions only reverse spherical micelles form, whereas reverse cylindrical micelles are detected by blending the fuel with the QAS additive. Moreover, experiments utilising X-ray micro computed tomography (micro-CT) in nozzle replicas, quantify that in cavitation regions the liquid fraction is increased in the presence of the QAS additive. Furthermore, high-flux X-ray phase contrast imaging (XPCI) measurements identify a flow stabilization effect in the region of vortex cavitation by the QAS additive. The effect of the formation of cylindrical micelles is reproduced with computational fluid dynamics (CFD) simulations by including viscoelastic characteristics for the flow. It is demonstrated that viscoelasticity can reduce turbulence and suppress cavitation, and subsequently increase the injector’s volumetric efficiency.

704 citations

Journal ArticleDOI
TL;DR: In this article, the authors assess the potential for future progress, as well as assess the benefits offered by competitor technologies, in order to make responsible recommendations for future directions, and discuss the factors impacting that future.
Abstract: Internal combustion (IC) engines operating on fossil fuel oil provide about 25% of the world’s power (about 3000 out of 13,000 million tons oil equivalent per year—see Figure 1), and in doing so, they produce about 10% of the world’s greenhouse gas (GHG) emissions (Figure 2). Reducing fuel consumption and emissions has been the goal of engine researchers and manufacturers for years, as can be seen in the two decades of ground-breaking peer-reviewed articles published in this International Journal of Engine Research (IJER). Indeed, major advances have been made, making today’s IC engine a technological marvel. However, recently, the reputation of IC engines has been dealt a severe blow by emission scandals that threaten the ability of this technology to make significant and further contributions to the reduction of transportation sector emissions. In response, there have been proposals to replace vehicle IC engines with electric-drives with the intended goals of further reducing fuel consumption and emissions, and to decrease vehicle GHG emissions. Indeed, some potential students and researchers are being dissuaded from seeking careers in IC engine research due to disparaging statements made in the popular press and elsewhere that disproportionately blame IC engines for increasing atmospheric GHGs. Without a continuous influx of enthusiastic, welltrained engineers into the profession, the potential further benefits that improved IC engines can still provide will not be realized. As responsible automotive engineers and as stewards of the environment for future generations, it is up to our community to make an honest assessment of the progress made in the development of IC engines over the past century, with their almost universal adoption to meet the world’s mobility and power generation needs. Considering that the maturity of IC engine technology is something that many other technologies/possibilities do not have, we also need to assess the potential for future progress, as well as to assess the benefits offered by competitor technologies, in order to make responsible recommendations for future directions. Factors impacting that future are discussed in this editorial and include the following:

365 citations

Journal ArticleDOI
15 Aug 2006
TL;DR: Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line.
Abstract: The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.

264 citations

Journal ArticleDOI
TL;DR: In this paper, a computational fluid dynamics cavitation model based on the Eulerian-Lagrangian approach and suitable for hole-type diesel injector nozzles is presented and discussed.
Abstract: A computational fluid dynamics cavitation model based on the Eulerian–Lagrangian approach and suitable for hole-type diesel injector nozzles is presented and discussed. The model accounts for a number of primary physical processes pertinent to cavitation bubbles, which are integrated into the stochastic framework of the model. Its predictive capability has been assessed through comparison of the calculated onset and development of cavitation inside diesel nozzle holes against experimental data obtained in real-size and enlarged models of single- and multi-hole nozzles. For the real-size nozzle geometry, high-speed cavitation images obtained under realistic injection pressures are compared against model predictions, whereas for the large-scale nozzle, validation data include images from a charge-coupled device (CCD) camera, computed tomography (CT) measurements of the liquid volume fraction and laser Doppler velocimetry (LDV) measurements of the liquid mean and root mean square (r.m.s.) velocities at different cavitation numbers (CN) and two needle lifts, corresponding to different cavitation regimes inside the injection hole. Overall, and on the basis of this validation exercise, it can be argued that cavitation modelling has reached a stage of maturity, where it can usefully identify many of the cavitation structures present in internal nozzle flows and their dependence on nozzle design and flow conditions.

186 citations


Cited by
More filters
Book
01 Dec 1988
TL;DR: In this paper, the basic processes in Atomization are discussed, and the drop size distributions of sprays are discussed.Preface 1.General Considerations 2.Basic Processes of Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.AtOMizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index
Abstract: Preface 1.General Considerations 2.Basic Processes in Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.Atomizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index

1,214 citations

Book
08 Feb 2000
TL;DR: In this paper, a review of the literature on direct-injection, stratified-charge (DISC) GDI engines is presented, as well as a discussion of their performance, emissions and fuel economy advantages.
Abstract: The development of four-stroke, spark-ignition engines that are designed to inject gasoline directly into the combustion chamber is an important worldwide initiative of the automotive industry. The thermodynamic potential of such engines for significantly enhanced fuel economy, transient response and cold-start hydrocarbon emission levels has led to a large number of research and development projects that have the goal of understanding, developing and optimizing gasoline direct-injection (GDI) combustion systems. The processes of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched, and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injectors are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations are of significant importance to engine researchers and developers. These data have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole. Thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and aftertreatment hardware are reviewed in depth, and areas of consensus on attaining European, Japanese and North American emission standards are compiled and discussed. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed. All current information in the literature is used as the basis for discussing the future development of automotive GDI engines.

810 citations