scispace - formally typeset
Search or ask a question

Showing papers by "Manolis Kellis published in 2003"


Journal ArticleDOI
15 May 2003-Nature
TL;DR: A comparative analysis of the yeast Saccharomyces cerevisiae based on high-quality draft sequences of three related species, which inferred a putative function for most of these motifs, and provided insights into their combinatorial interactions.
Abstract: Identifying the functional elements encoded in a genome is one of the principal challenges in modern biology. Comparative genomics should offer a powerful, general approach. Here, we present a comparative analysis of the yeast Saccharomyces cerevisiae based on high-quality draft sequences of three related species (S. paradoxus, S. mikatae and S. bayanus). We first aligned the genomes and characterized their evolution, defining the regions and mechanisms of change. We then developed methods for direct identification of genes and regulatory motifs. The gene analysis yielded a major revision to the yeast gene catalogue, affecting approximately 15% of all genes and reducing the total count by about 500 genes. The motif analysis automatically identified 72 genome-wide elements, including most known regulatory motifs and numerous new motifs. We inferred a putative function for most of these motifs, and provided insights into their combinatorial interactions. The results have implications for genome analysis of diverse organisms, including the human.

1,837 citations


Journal ArticleDOI
TL;DR: The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs, but they remain difficult to identify as discussed by the authors.
Abstract: Background The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution.

167 citations


Journal ArticleDOI
TL;DR: This work suggests that positional information, especially the relative spacing between transcription factor binding sites, may represent a common organizing principle of transcription control regions.
Abstract: Background Transcriptional regulation in eukaryotes often involves multiple transcription factors binding to the same transcription control region, and to understand the regulatory content of eukaryotic genomes it is necessary to consider the co-occurrence and spatial relationships of individual binding sites. The determination of conserved sequences (often known as phylogenetic footprinting) has identified individual transcription factor binding sites. We extend this concept of functional conservation to higher-order features of transcription control regions.

57 citations


01 Jan 2003
TL;DR: The mathematical and algorithmic results underpinning the analysis of the genome sequences of S. paradoxus, S. mikatae and S. bayanus are described and the methods for the automatic determination of genome correspondence are presented, demonstrating the power of comparative genomics to further the understanding of any species.
Abstract: In Kellis et al. (2003), we reported the genome sequences of S. paradoxus, S. mikatae and S. bayanus and compared these three yeast species to their close relative, S. cerevisiae. Genome-wide comparative analysis allowed the identification of functionally important sequences, both coding and non-coding. In this companion paper we describe the mathematical and algorithmic results underpinning the analysis of these genomes. We present methods for the automatic determination of genome correspondence. The algorithms enabled the automatic identification of orthologs for more than 90% of genes and intergenic regions across the four species despite the large number of duplicated genes in the yeast genome. The remaining ambiguities in the gene correspondence revealed recent gene family expansions in regions of rapid genomic change. We present methods for the identification of protein-coding genes based on their patterns of nucleotide conservation across related species. We observed the pressure to conserve the reading frame of functional proteins and developed a test for gene identification with high sensitivity and specificity. We used this test to revisit the genome of S. cerevisiae, reducing the overall gene count by 500 genes (10% of previously annotated genes) and refi ning the gene structure of hundreds of genes. We present novel methods for the systematic de novo identification of regulatory motifs. The methods do not rely on previous knowledge of gene function and in that way differ from the current literature on computational motif discovery. Based on the genome-wide conservation patterns of known motifs, we developed three conservation criteria that we used to discover novel motifs. We used an enumeration approach to select strongly conserved motif cores, which we extended and collapsed into a small number of candidate regulatory motifs. These include most previously known regulatory motifs as well as several noteworthy novel motifs. The majority of discovered motifs are enriched in functionally related genes, allowing us to infer a candidate function for novel motifs. Our results demonstrate the power of comparative genomics to further our understanding of any species. Our methods are validated by the extensive experimental knowledge in yeast, and will be invaluable in the study of complex genomes like that of human.

12 citations


01 Aug 2003
TL;DR: The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative sequence data in the identification of transcription factor binding sites and is an important step toward understanding the evolution of functional non-coding DNA.
Abstract: BackgroundThe binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution.ResultsHere we analyse the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikatae to study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artefacts of computational motif finding algorithms.ConclusionAs has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative sequence data in the identification of transcription factor binding sites and is an important step toward understanding the evolution of functional non-coding DNA.

8 citations