scispace - formally typeset
Search or ask a question
Author

Manolis Kellis

Other affiliations: Broad Institute, Epigenomics AG, Harvard University  ...read more
Bio: Manolis Kellis is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 128, co-authored 405 publications receiving 112181 citations. Previous affiliations of Manolis Kellis include Broad Institute & Epigenomics AG.


Papers
More filters
Journal ArticleDOI
TL;DR: A phylogenetic reconstruction methodology is developed that exploits common properties of gene trees and achieves significantly higher accuracy, addressing the species-level heterotachy and enabling studies of gene evolution in the context of species evolution.
Abstract: Comparative genomics provides a general methodology for discovering functional DNA elements and understanding their evolution. The availability of many related genomes enables more powerful analyses, but requires rigorous phylogenetic methods to resolve orthologous genes and regions. Here, we use 12 recently sequenced Drosophila genomes and nine fungal genomes to address the problem of accurate gene-tree reconstruction across many complete genomes. We show that existing phylogenetic methods that treat each gene tree in isolation show large-scale inaccuracies, largely due to insufficient phylogenetic information in individual genes. However, we find that gene trees exhibit common properties that can be exploited for evolutionary studies and accurate phylogenetic reconstruction. Evolutionary rates can be decoupled into gene-specific and species-specific components, which can be learned across complete genomes. We develop a phylogenetic reconstruction methodology that exploits these properties and achieves significantly higher accuracy, addressing the species-level heterotachy and enabling studies of gene evolution in the context of species evolution.

85 citations

Journal Article
TL;DR: The modENCODE project as mentioned in this paper has been used to study the functional regulatory network of Drosophila melanogaster and Caenorhabditis elegans worms, including the binding sites of transcription factors.
Abstract: From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter). In this vein, Gerstein et al. (p. 1775) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. The Drosophila modENCODE project demonstrates the functional regulatory network of flies. To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.

81 citations

Journal ArticleDOI
TL;DR: This work uses soft X-ray tomography (SXT) to image chromatin organization, distribution, and biophysical properties during neurogenesis in vivo and reveals that chromatin with similarBiophysical properties forms an elaborate connected network throughout the entire nucleus.

81 citations

Journal ArticleDOI
28 Sep 2018-Science
TL;DR: The exploration of the link between SD-ASM, stochastic variation in DNA methylation, and gene regulation requires deep coverage by WGBS across tissues and individuals and the context of other epigenomic marks and gene transcription.
Abstract: INTRODUCTION A majority of imbalances in DNA methylation between homologous chromosomes in humans are sequence-dependent; the DNA sequence differences between the two chromosomes cause differences in the methylation state of neighboring cytosines on the same chromosome. The analyses of this sequence-dependent allele-specific methylation (SD-ASM) traditionally involved measurement of average methylation levels across many cells. Detailed understanding of SD-ASM at the single-cell and single-chromosome levels is lacking. This gap in understanding may hide the connection between SD-ASM, ubiquitous stochastic cell-to-cell and chromosome-to-chromosome variation in DNA methylation, and the puzzling and evolutionarily conserved patterns of intermediate methylation at gene regulatory loci. RATIONALE Whole-genome bisulfite sequencing (WGBS) provides the ultimate single-chromosome level of resolution and comprehensive whole-genome coverage required to explore SD-ASM. However, the exploration of the link between SD-ASM, stochastic variation in DNA methylation, and gene regulation requires deep coverage by WGBS across tissues and individuals and the context of other epigenomic marks and gene transcription. RESULTS We constructed maps of allelic imbalances in DNA methylation, histone marks, and gene transcription in 71 epigenomes from 36 distinct cell and tissue types from 13 donors. Deep (1691-fold) combined WGBS read coverage across 49 methylomes revealed CpG methylation imbalances exceeding 30% differences at 5% of the loci, which is more conservative than previous estimates in the 8 to 10% range; a similar value (8%) is observed in our dataset when we lowered our threshold for detecting allelic imbalance to 20% methylation difference between the two alleles. Extensive sequence-dependent CpG methylation imbalances were observed at thousands of heterozygous regulatory loci. Stochastic switching, defined as random transitions between fully methylated and unmethylated states of DNA, occurred at thousands of regulatory loci bound by transcription factors (TFs). Our results explain the conservation of intermediate methylation states at regulatory loci by showing that the intermediate methylation reflects the relative frequencies of fully methylated and fully unmethylated epialleles. SD-ASM is explainable by different relative frequencies of methylated and unmethylated epialleles for the two alleles. The differences in epiallele frequency spectra of the alleles at thousands of TF-bound regulatory loci correlated with the differences in alleles’ affinities for TF binding, which suggests a mechanistic explanation for SD-ASM. We observed an excess of rare variants among those showing SD-ASM, which suggests that an average human genome harbors at least ~200 detrimental rare variants that also show SD-ASM. The methylome’s sensitivity to genetic variation is unevenly distributed across the genome, which is consistent with buffering of housekeeping genes against the effects of random mutations. By contrast, less essential genes with tissue-specific expression patterns show sensitivity, thus providing opportunity for evolutionary innovation through changes in gene regulation. CONCLUSION Analysis of allelic epigenome maps provides a unifying model that links sequence-dependent allelic imbalances of the epigenome, stochastic switching at gene regulatory loci, selective buffering of the regulatory circuitry against the effects of random mutations, and disease-associated genetic variation.

80 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI
TL;DR: The Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure outperforms other aligners by a factor of >50 in mapping speed.
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.

30,684 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
23 Jan 2009-Cell
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.

18,036 citations

Journal ArticleDOI
TL;DR: The Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available, providing a unified solution for transcriptome reconstruction in any sample.
Abstract: Massively parallel sequencing of cDNA has enabled deep and efficient probing of transcriptomes. Current approaches for transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples with a partial or missing reference genome. Here we present the Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available. By efficiently constructing and analyzing sets of de Bruijn graphs, Trinity fully reconstructs a large fraction of transcripts, including alternatively spliced isoforms and transcripts from recently duplicated genes. Compared with other de novo transcriptome assemblers, Trinity recovers more full-length transcripts across a broad range of expression levels, with a sensitivity similar to methods that rely on genome alignments. Our approach provides a unified solution for transcriptome reconstruction in any sample, especially in the absence of a reference genome.

15,665 citations