scispace - formally typeset
Search or ask a question
Author

Manolis Kellis

Other affiliations: Broad Institute, Epigenomics AG, Harvard University  ...read more
Bio: Manolis Kellis is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 128, co-authored 405 publications receiving 112181 citations. Previous affiliations of Manolis Kellis include Broad Institute & Epigenomics AG.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors used single-nucleus RNA-sequencing data from male Grade 1 HD patient post-mortem brain samples and male zQ175 and R6/2 mouse models to show that the two axes are multiplexed and differentially compromised in HD.
Abstract: Striatal projection neurons (SPNs), which progressively degenerate in human patients with Huntington's disease (HD), are classified along two axes: the canonical direct-indirect pathway division and the striosome-matrix compartmentation. It is well established that the indirect-pathway SPNs are susceptible to neurodegeneration and transcriptomic disturbances, but less is known about how the striosome-matrix axis is compromised in HD in relation to the canonical axis. Here we show, using single-nucleus RNA-sequencing data from male Grade 1 HD patient post-mortem brain samples and male zQ175 and R6/2 mouse models, that the two axes are multiplexed and differentially compromised in HD. In human HD, striosomal indirect-pathway SPNs are the most depleted SPN population. In mouse HD models, the transcriptomic distinctiveness of striosome-matrix SPNs is diminished more than that of direct-indirect pathway SPNs. Furthermore, the loss of striosome-matrix distinction is more prominent within indirect-pathway SPNs. These results open the possibility that the canonical direct-indirect pathway and striosome-matrix compartments are differentially compromised in late and early stages of disease progression, respectively, differentially contributing to the symptoms, thus calling for distinct therapeutic strategies.

6 citations

Posted ContentDOI
20 Feb 2017-bioRxiv
TL;DR: The model is used to train a machine learning model that uses DNA sequence information, regulatory motif annotations, evolutionary conservation, and epigenomic information to predict genomic regions that show enhancer activity when tested in MPRA assays, and finds that genetic variants with stronger predicted regulatory activity show significantly lower minor allele frequency.
Abstract: Massively-parallel reporter assays (MPRA) enable unprecedented opportunities to test for regulatory activity of thousands of regulatory sequences. However, MPRA only assay a subset of the genome thus limiting their applicability for genome-wide functional annotations. To overcome this limitation, we have used existing MPRA datasets to train a machine learning model that uses DNA sequence information, regulatory motif annotations, evolutionary conservation, and epigenomic information to predict genomic regions that show enhancer activity when tested in MPRA assays. We used the resulting model to generate global predictions of regulatory activity at single-nucleotide resolution across 14 million common variants. We find that genetic variants with stronger predicted regulatory activity show significantly lower minor allele frequency, indicative of evolutionary selection within the human population. They also show higher overlap with eQTL annotations across multiple tissues relative to the background SNPs, indicating that their perturbations in vivo more frequently result in changes in gene expression. In addition, they are more frequently associated with trait-associated SNPs from genome-wide association studies (GWAS), enabling us to prioritize genetic variants that are more likely to be causal based on their predicted regulatory activity. Lastly, we use our model to compare MPRA inferences across cell types and platforms and to prioritize the assays most predictive of MPRA assay results, including cell-dependent DNase hypersensitivity sites and transcription factors known to be active in the tested cell types. Our results indicate that high-throughput testing of thousands of putative regions, coupled with regulatory predictions across millions of sites, presents a powerful strategy for systematic annotation of genomic regions and genetic variants.

6 citations

Posted ContentDOI
10 Nov 2017-bioRxiv
TL;DR: It is shown that the unbiased integration of independent data sources suggestive of regulatory interactions produces meaningful associations supported by existing functional and physical evidence, correlating with expected independent biological features.
Abstract: Despite large experimental and computational efforts aiming to dissect the mechanisms underlying disease risk, mapping cis-regulatory elements to target genes remains a challenge. Here, we introduce a matrix factorization framework to integrate physical and functional interaction data of genomic segments. The framework was used to predict a regulatory network of chromatin interaction edges linking more than 20,000 promoters and 1.8 million enhancers across 127 human reference epigenomes, including edges that are present in any of the input datasets. Our network integrates functional evidence of correlated activity patterns from epigenomic data and physical evidence of chromatin interactions. An important contribution of this work is the representation of heterogeneous data with different qualities as networks. We show that the unbiased integration of independent data sources suggestive of regulatory interactions produces meaningful associations supported by existing functional and physical evidence, correlating with expected independent biological features.

6 citations

01 Mar 2014
TL;DR: The National Institute on Deafness and Other Communication Disorders (U.S. National Institute of Mental Health (NIMH) (1F32GM099408-01) as mentioned in this paper.
Abstract: National Institute on Deafness and Other Communication Disorders (U.S.) (National Research Service Award postdoctoral fellowship (1F32GM099408-01))

6 citations

Posted ContentDOI
01 May 2022-medRxiv
TL;DR: This work examines four datasets and the biases underlying patient mortality risk, and provides recommendations for clinical practice and data analysis: interpretable "glass-box" models can transform the challenges of statistical confounding into opportunities to improve medical practice.
Abstract: Recommendations for clinical practice consider consistency of application and ease of implementation, resulting in treatment decisions that use round numbers and sharp thresholds even though these choices produce statistically sub-optimal decisions. To characterize the impact of these choices, we examine four datasets and the biases underlying patient mortality risk. We document two types of suboptimalities: (1) discontinuities in which treatment decisions produce step-function changes in risk near clinically-important round-number cutoffs, and (2) counter-causal paradoxes in which anti-correlation between risk factors and aggressive treatment produces risk curves that contradict underlying causal risk. We also show that outcomes have improved over decades of refinement of clinical practice, reducing but not eliminating the strength of these biases. Finally, we provide recommendations for clinical practice and data analysis: interpretable "glass-box" models can transform the challenges of statistical confounding into opportunities to improve medical practice.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI
TL;DR: The Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure outperforms other aligners by a factor of >50 in mapping speed.
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.

30,684 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
23 Jan 2009-Cell
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.

18,036 citations

Journal ArticleDOI
TL;DR: The Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available, providing a unified solution for transcriptome reconstruction in any sample.
Abstract: Massively parallel sequencing of cDNA has enabled deep and efficient probing of transcriptomes. Current approaches for transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples with a partial or missing reference genome. Here we present the Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available. By efficiently constructing and analyzing sets of de Bruijn graphs, Trinity fully reconstructs a large fraction of transcripts, including alternatively spliced isoforms and transcripts from recently duplicated genes. Compared with other de novo transcriptome assemblers, Trinity recovers more full-length transcripts across a broad range of expression levels, with a sensitivity similar to methods that rely on genome alignments. Our approach provides a unified solution for transcriptome reconstruction in any sample, especially in the absence of a reference genome.

15,665 citations