scispace - formally typeset
Search or ask a question
Author

Manuel Andrés Vélez-Guerrero

Bio: Manuel Andrés Vélez-Guerrero is an academic researcher from Pedagogical and Technological University of Colombia. The author has contributed to research in topics: Exoskeleton & Powered exoskeleton. The author has an hindex of 1, co-authored 7 publications receiving 7 citations.

Papers
More filters
Journal ArticleDOI
18 Mar 2021-Sensors
TL;DR: In this paper, a literature search was performed in Scopus, IEEE Xplore, Web of Science, and PubMed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology with three main inclusion criteria: (a) motor or neuromotor rehabilitation for upper limbs, (b) mobile robotic exoskeletons, and (c) AI.
Abstract: Processing and control systems based on artificial intelligence (AI) have progressively improved mobile robotic exoskeletons used in upper-limb motor rehabilitation. This systematic review presents the advances and trends of those technologies. A literature search was performed in Scopus, IEEE Xplore, Web of Science, and PubMed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology with three main inclusion criteria: (a) motor or neuromotor rehabilitation for upper limbs, (b) mobile robotic exoskeletons, and (c) AI. The period under investigation spanned from 2016 to 2020, resulting in 30 articles that met the criteria. The literature showed the use of artificial neural networks (40%), adaptive algorithms (20%), and other mixed AI techniques (40%). Additionally, it was found that in only 16% of the articles, developments focused on neuromotor rehabilitation. The main trend in the research is the development of wearable robotic exoskeletons (53%) and the fusion of data collected from multiple sensors that enrich the training of intelligent algorithms. There is a latent need to develop more reliable systems through clinical validation and improvement of technical characteristics, such as weight/dimensions of devices, in order to have positive impacts on the rehabilitation process and improve the interactions among patients, teams of health professionals, and technology.

30 citations

Journal ArticleDOI
10 Aug 2021-Sensors
TL;DR: In this article, a wearable robotic exoskeleton prototype with autonomous Artificial Intelligence-based control, processing, and safety algorithms is presented, which allows flexion-extension at the elbow joint, where the chosen materials render it compact.
Abstract: Neuromotor rehabilitation and recovery of upper limb functions are essential to improve the life quality of patients who have suffered injuries or have pathological sequels, where it is desirable to enhance the development of activities of daily living (ADLs). Modern approaches such as robotic-assisted rehabilitation provide decisive factors for effective motor recovery, such as objective assessment of the progress of the patient and the potential for the implementation of personalized training plans. This paper focuses on the design, development, and preliminary testing of a wearable robotic exoskeleton prototype with autonomous Artificial Intelligence-based control, processing, and safety algorithms that are fully embedded in the device. The proposed exoskeleton is a 1-DoF system that allows flexion-extension at the elbow joint, where the chosen materials render it compact. Different operation modes are supported by a hierarchical control strategy, allowing operation in autonomous mode, remote control mode, or in a leader-follower mode. Laboratory tests validate the proper operation of the integrated technologies, highlighting a low latency and reasonable accuracy. The experimental result shows that the device can be suitable for use in providing support for diagnostic and rehabilitation processes of neuromotor functions, although optimizations and rigorous clinical validation are required beforehand.

10 citations

Journal ArticleDOI
08 Dec 2018
TL;DR: In this paper, an arquitectura for the integracion of bioparametros basado en unidades de procesamiento de movimiento inercial-magnetico (MPUs) and electromiografia (EMG).
Abstract: Este trabajo presenta una arquitectura para la medicion e integracion de bioparametros basado en unidades de procesamiento de movimiento inercial-magnetico (MPUs) y electromiografia (EMG). Derivado de la arquitectura propuesta, se logro desarrollar un dispositivo llamado Imocap, el cual reune y utiliza las mejores caracteristicas de la tecnologia MPU + EMG para realizar una medicion completa en el segmento de brazo y antebrazo en el cuerpo humano. Se presenta en primer lugar la revision bibliografica de los metodos y herramientas para la captura del movimiento biomecanico, seguido de las tecnicas y aplicaciones de la recoleccion de bioparametros. Finalmente, se muestra la arquitectura y la descripcion del sistema Imocap, algunas aplicaciones y discusion. Como trabajo futuro, Imocap tiene como objetivo proporcionar la informacion necesaria en un sistema de control electronico para una plataforma de rehabilitacion basada en exoesqueletos roboticos.

3 citations

Journal ArticleDOI
25 May 2022-Sensors
TL;DR: In this article , the mechanical support properties of a servo-controlled robotic exoskeleton prototype for rehabilitation in upper limbs were evaluated using an external high-precision optical tracking system.
Abstract: Robotic exoskeletons are active devices that assist or counteract the movements of the body limbs in a variety of tasks, including in industrial environments or rehabilitation processes. With the introduction of textile and soft materials in these devices, the effective motion transmission, mechanical support of the limbs, and resistance to physical disturbances are some of the most desirable structural features. This paper proposes an evaluation protocol and assesses the mechanical support properties of a servo-controlled robotic exoskeleton prototype for rehabilitation in upper limbs. Since this prototype was built from soft materials, it is necessary to evaluate the mechanical behavior in the areas that support the arm. Some of the rehabilitation-supporting movements such as elbow flexion and extension, as well as increased muscle tone (spasticity), are emulated. Measurements are taken using the reference supplied to the system’s control stage and then compared with an external high-precision optical tracking system. As a result, it is evidenced that the use of soft materials provides satisfactory outcomes in the motion transfer and support to the limb. In addition, this study lays the groundwork for a future assessment of the prototype in a controlled laboratory environment using human test subjects.

3 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a characterization of the wireless transmission of biomechanical signals in an embedded system, where a TCP protocol is used in an IEEE 802.11 communications network (Wi-Fi).
Abstract: This paper presents a characterization of the wireless transmission of biomechanical signals in an embedded system, where a TCP protocol is used in an IEEE 802.11 communications network (Wi-Fi). The embedded system under study, called Imocap, allows the collection, analysis and transmission of biomechanical signals in real-time for various applications, among which the analysis of the movement of the lower and upper extremities and the operation of various control systems stand out. To accomplish this, Imocap is equipped with a Wi-Fi transceiver module (ESP8266) and various input and output peripherals. The wireless communication performance of Imocap, exposed in this paper, was analyzed through different tests in miscellaneous conditions like indoors, outdoors and in the presence of interference, noise and other wireless networks. The different test protocols conducted result in the Imocap system: 1) has a maximum effective range of 45.6 m when in Access Point mode; 2) has a maximum effective range of 44.3 m when in Station mode. In indoors and under the same conditions, the Imocap system: 3) has a maximum effective range of 81.25 m2, either Access Point or Station mode. The results showed that the transmission of biomechanical information through Wi-Fi using the TCP protocol is efficient and robust, both indoors and outdoors, even in environments of radio frequency interference. The use of this protocol is emphasized since its use allows the transmission of packages to be carried out in a controlled manner, allowing the error handling and recovery. In this way, it is possible to carry out efficient and robust wireless communication through embedded and portable devices, focusing mainly on areas such as medicine, telemedicine and telerehabilitation.

2 citations


Cited by
More filters
Journal ArticleDOI
23 Jun 2022-Sensors
TL;DR: In this paper , the authors evaluated the performance of wrist-worn and chest-strap commercial devices used during swimming activity, considering a test population of 10 expert swimmers, and found that both precision and accuracy worsen during swimming activities (with an absolute increase of the measurement deviation in the range of 13-56 bpm for mean value and 49-52 bmm for standard deviation).
Abstract: Nowadays, the use of wearable devices is spreading in different fields of application, such as healthcare, digital health, and sports monitoring. In sport applications, the present trend is to continuously monitor the athletes’ physiological parameters during training or competitions to maximize performance and support coaches. This paper aims to evaluate the performances in heart rate assessment, in terms of accuracy and precision, of both wrist-worn and chest-strap commercial devices used during swimming activity, considering a test population of 10 expert swimmers. Three devices were employed: Polar H10 cardiac belt, Polar Vantage V2, and Garmin Venu Sq smartwatches. The former was used as a reference device to validate the data measured by the two smartwatches. Tests were performed both in dry and wet conditions, considering walking/running on a treadmill and different swimming styles in water, respectively. The measurement accuracy and precision were evaluated through standard methods, i.e., Bland–Altman plot, analysis of deviations, and Pearson’s correlation coefficient. Results show that both precision and accuracy worsen during swimming activity (with an absolute increase of the measurement deviation in the range of 13–56 bpm for mean value and 49–52 bpm for standard deviation), proving how water and arms movement act as relevant interference inputs. Moreover, it was found that wearable performance decreases when activity intensity increases, highlighting the need for specific research for wearable applications in water, with a particular focus on swimming-related sports activities.

12 citations

Journal ArticleDOI
TL;DR: After evaluating the abilities of 35 devices, it is inferred that standard characteristics for HRDs should include an exoskeleton design, the incorporation of challenge-based and coaching therapeutic strategies, and the implementation of surface electromyogram signals (sEMG) based control.
Abstract: A cerebrovascular accident, or a stroke, can cause significant neurological damage, inflicting the patient with loss of motor function in their hands. Standard rehabilitation therapy for the hand increases demands on clinics, creating an avenue for powered hand rehabilitation devices. Hand rehabilitation devices (HRDs) are devices designed to provide the hand with passive, active, and active-assisted rehabilitation therapy; however, HRDs do not have any standards in terms of development or design. Although the categorization of an injury’s severity can guide a patient into seeking proper assistance, rehabilitation devices do not have a set standard to provide a solution from the beginning to the end stages of recovery. In this paper, HRDs are defined and compared by their mechanical designs, actuation mechanisms, control systems, and therapeutic strategies. Furthermore, devices with conducted clinical trials are used to determine the future development of HRDs. After evaluating the abilities of 35 devices, it is inferred that standard characteristics for HRDs should include an exoskeleton design, the incorporation of challenge-based and coaching therapeutic strategies, and the implementation of surface electromyogram signals (sEMG) based control.

10 citations

Journal ArticleDOI
10 Aug 2021-Sensors
TL;DR: In this article, a wearable robotic exoskeleton prototype with autonomous Artificial Intelligence-based control, processing, and safety algorithms is presented, which allows flexion-extension at the elbow joint, where the chosen materials render it compact.
Abstract: Neuromotor rehabilitation and recovery of upper limb functions are essential to improve the life quality of patients who have suffered injuries or have pathological sequels, where it is desirable to enhance the development of activities of daily living (ADLs). Modern approaches such as robotic-assisted rehabilitation provide decisive factors for effective motor recovery, such as objective assessment of the progress of the patient and the potential for the implementation of personalized training plans. This paper focuses on the design, development, and preliminary testing of a wearable robotic exoskeleton prototype with autonomous Artificial Intelligence-based control, processing, and safety algorithms that are fully embedded in the device. The proposed exoskeleton is a 1-DoF system that allows flexion-extension at the elbow joint, where the chosen materials render it compact. Different operation modes are supported by a hierarchical control strategy, allowing operation in autonomous mode, remote control mode, or in a leader-follower mode. Laboratory tests validate the proper operation of the integrated technologies, highlighting a low latency and reasonable accuracy. The experimental result shows that the device can be suitable for use in providing support for diagnostic and rehabilitation processes of neuromotor functions, although optimizations and rigorous clinical validation are required beforehand.

10 citations

Journal ArticleDOI
TL;DR: The current research status of hand function rehabilitation devices based on various types of hand motion recognition technologies and analyzes their advantages and disadvantages, reviews the application of artificial intelligence in hand rehabilitation robots, and summarizes the current research limitations and discusses future research directions.
Abstract: The incidence of stroke and the burden on health care and society are expected to increase significantly in the coming years, due to the increasing aging of the population. Various sensory, motor, cognitive and psychological disorders may remain in the patient after survival from a stroke. In hemiplegic patients with movement disorders, the impairment of upper limb function, especially hand function, dramatically limits the ability of patients to perform activities of daily living (ADL). Therefore, one of the essential goals of post-stroke rehabilitation is to restore hand function. The recovery of motor function is achieved chiefly through compensatory strategies, such as hand rehabilitation robots, which have been available since the end of the last century. This paper reviews the current research status of hand function rehabilitation devices based on various types of hand motion recognition technologies and analyzes their advantages and disadvantages, reviews the application of artificial intelligence in hand rehabilitation robots, and summarizes the current research limitations and discusses future research directions.

7 citations

Journal ArticleDOI
TL;DR: In this article, a dynamic mathematical model of the squat posture was established, and analyzed the dynamic parameters of the hip joint, knee joint and ankle joint during the squatting posture of the wearable lower extremity exoskeleton robot.

5 citations