scispace - formally typeset
Search or ask a question
Author

Manuel Blanco-Muriel

Bio: Manuel Blanco-Muriel is an academic researcher. The author has contributed to research in topics: Solar tracker & Position (vector). The author has an hindex of 1, co-authored 1 publications receiving 337 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A new algorithm, developed at the Plataforma Solar de Almeria, which combines these two characteristics of accuracy and simplicity, is presented and allows of the true solar vector to be determined with an accuracy of 0.5 minutes of arc for the period 1999–2015.

367 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The uvspec program, a suite of tools for radiative transfer calculations in the Earth's atmosphere, and additional tools included with libRadtran are described and realistic examples of their use are given.
Abstract: . The libRadtran software package is a suite of tools for radiative transfer calculations in the Earth's atmosphere. Its main tool is the uvspec program. It may be used to compute radiances, irradiances and actinic fluxes in the solar and terrestrial part of the spectrum. The design of uvspec allows simple problems to be easily solved using defaults and included data, hence making it suitable for educational purposes. At the same time the flexibility in how and what input may be specified makes it a powerful and versatile tool for research tasks. The uvspec tool and additional tools included with libRadtran are described and realistic examples of their use are given. The libRadtran software package is available from http://www.libradtran.org.

1,309 citations

Journal ArticleDOI
TL;DR: In this paper, a step-by-step procedure for implementing an algorithm to calculate the solar zenith and azimuth angles in the period from the year −2000 to 6000, with uncertainties of ± 0.0003°.

1,053 citations

Journal ArticleDOI
TL;DR: In this article, different types of sun tracking systems are reviewed and their pros and cons are discussed and the most efficient and popular sun tracking device was found to be in the form of polar-axis and azimuth/elevation types.
Abstract: Finding energy sources to satisfy the world's growing demand is one of society's foremost challenges for the next half-century. The challenge in converting sunlight to electricity via photovoltaic solar cells is dramatically reducing $/watt of delivered solar electricity. In this context the sun trackers are such devices for efficiency improvement. The diurnal and seasonal movement of earth affects the radiation intensity on the solar systems. Sun-trackers move the solar systems to compensate for these motions, keeping the best orientation relative to the sun. Although using sun-tracker is not essential, its use can boost the collected energy 10–100% in different periods of time and geographical conditions. However, it is not recommended to use tracking system for small solar panels because of high energy losses in the driving systems. It is found that the power consumption by tracking device is 2–3% of the increased energy. In this paper different types of sun-tracking systems are reviewed and their cons and pros are discussed. The most efficient and popular sun-tracking device was found to be in the form of polar-axis and azimuth/elevation types.

770 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the current state of the art of parabolic trough solar power technology and describe the R&D efforts that are in progress to enhance this technology.
Abstract: Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. These plants, developed by Luz International Limited and referred to as Solar Electric Generating Systems (SEGS), range in size from 14-80 MW and represent 354 MW of installed electric generating capacity. More than 2,000,000 m 2 of parabolic trough collector technology has been operating daily for up to 18 years, and as the year 2001 ended, these plants had accumulated 127 years of operational experience. The Luz collector technology has demonstrated its ability to operate in a commercial power plant environment like no other solar technology in the world. Although no new plants have been built since 1990, significant advancements in collector and plant design have been made possible by the efforts of the SEGS plants operators, the parabolic trough industry, and solar research laboratories around the world. This paper reviews the current state of the art of parabolic trough solar power technology and describes the R&D efforts that are in progress to enhance this technology. The paper also shows how the economics of future parabolic trough solar power plants are expected to improve.

762 citations

Journal ArticleDOI
TL;DR: In this article, the intrinsic performance of 18 broadband radiative models is assessed, using high-quality datasets from five sites in widely different climates, and the results show that the inferior performance of models requiring little or no atmospheric inputs suggests that large scale solar resource products derived from them may be inappropriate for serious solar applications.

262 citations