scispace - formally typeset
Search or ask a question
Author

Manuel Lozano

Bio: Manuel Lozano is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Detector & Silicon. The author has an hindex of 28, co-authored 194 publications receiving 3659 citations. Previous affiliations of Manuel Lozano include University of Bergen & Autonomous University of Barcelona.


Papers
More filters
Journal ArticleDOI
G. Lindström1, M. Ahmed2, Sebastiano Albergo, Phillip Allport3, D.F. Anderson4, Ladislav Andricek5, M. Angarano6, Vincenzo Augelli, N. Bacchetta, P. Bartalini6, Richard Bates7, U. Biggeri, G. M. Bilei6, Dario Bisello, D. Boemi, E. Borchi, T. Botila, T. J. Brodbeck8, Mara Bruzzi, T. Budzyński, P. Burger, Francesca Campabadal9, Gianluigi Casse3, E. Catacchini, A. Chilingarov8, Paolo Ciampolini6, Vladimir Cindro10, M. J. Costa9, Donato Creanza, Paul Clauws11, C. Da Via2, Gavin Davies12, W. De Boer13, Roberto Dell'Orso, M. De Palma, B. Dezillie14, V. K. Eremin, O. Evrard, Giorgio Fallica15, Georgios Fanourakis, H. Feick16, Ettore Focardi, Luis Fonseca9, E. Fretwurst1, J. Fuster9, K. Gabathuler, Maurice Glaser17, Piotr Grabiec, E. Grigoriev13, Geoffrey Hall18, M. Hanlon3, F. Hauler13, S. Heising13, A. Holmes-Siedle2, Roland Horisberger, G. Hughes8, Mika Huhtinen17, I. Ilyashenko, Andrew Ivanov, B.K. Jones8, L. Jungermann13, A. Kaminsky, Z. Kohout19, Gregor Kramberger10, M Kuhnke1, Simon Kwan4, F. Lemeilleur17, Claude Leroy20, M. Letheren17, Z. Li14, Teresa Ligonzo, Vladimír Linhart19, P.G. Litovchenko21, Demetrios Loukas, Manuel Lozano9, Z. Luczynski, Gerhard Lutz5, B. C. MacEvoy18, S. Manolopoulos7, A. Markou, C Martinez9, Alberto Messineo, M. Mikuž10, Michael Moll17, E. Nossarzewska, G. Ottaviani, Val O'Shea7, G. Parrini, Daniele Passeri6, D. Petre, A. Pickford7, Ioana Pintilie, Lucian Pintilie, Stanislav Pospisil19, Renato Potenza, C. Raine7, Joan Marc Rafi9, P. N. Ratoff8, Robert Richter5, Petra Riedler17, Shaun Roe17, P. Roy20, Arie Ruzin22, A.I. Ryazanov23, A. Santocchia18, Luigi Schiavulli, P. Sicho24, I. Siotis, T. J. Sloan8, W. Slysz, Kristine M. Smith7, M. Solanky2, B. Sopko19, K. Stolze, B. Sundby Avset25, B. G. Svensson26, C. Tivarus, Guido Tonelli, Alessia Tricomi, Spyros Tzamarias, Giusy Valvo15, A. Vasilescu, A. Vayaki, E. M. Verbitskaya, Piero Giorgio Verdini, Vaclav Vrba24, Stephen Watts2, Eicke R. Weber16, M. Wegrzecki, I. Węgrzecka, P. Weilhammer17, R. Wheadon, C.D. Wilburn27, I. Wilhelm28, R. Wunstorf29, J. Wüstenfeld29, J. Wyss, K. Zankel17, P. Zabierowski, D. Žontar10 
TL;DR: In this paper, a defect engineering technique was employed resulting in the development of Oxygen enriched FZ silicon (DOFZ), ensuring the necessary O-enrichment of about 2×1017 O/cm3 in the normal detector processing.
Abstract: The RD48 (ROSE) collaboration has succeeded to develop radiation hard silicon detectors, capable to withstand the harsh hadron fluences in the tracking areas of LHC experiments. In order to reach this objective, a defect engineering technique was employed resulting in the development of Oxygen enriched FZ silicon (DOFZ), ensuring the necessary O-enrichment of about 2×1017 O/cm3 in the normal detector processing. Systematic investigations have been carried out on various standard and oxygenated silicon diodes with neutron, proton and pion irradiation up to a fluence of 5×1014 cm−2 (1 MeV neutron equivalent). Major focus is on the changes of the effective doping concentration (depletion voltage). Other aspects (reverse current, charge collection) are covered too and the appreciable benefits obtained with DOFZ silicon in radiation tolerance for charged hadrons are outlined. The results are reliably described by the “Hamburg model”: its application to LHC experimental conditions is shown, demonstrating the superiority of the defect engineered silicon. Microscopic aspects of damage effects are also discussed, including differences due to charged and neutral hadron irradiation.

402 citations

ReportDOI
01 Feb 2010
TL;DR: The International Large Detector (ILD) is a concept for a detector at the International Linear Collider, ILC as discussed by the authors, which will collide electrons and positrons at energies of initially 500 GeV, upgradeable to 1 TeV.
Abstract: The International Large Detector (ILD) is a concept for a detector at the International Linear Collider, ILC. The ILC will collide electrons and positrons at energies of initially 500 GeV, upgradeable to 1 TeV. The ILC has an ambitious physics program, which will extend and complement that of the Large Hadron Collider (LHC). A hallmark of physics at the ILC is precision. The clean initial state and the comparatively benign environment of a lepton collider are ideally suited to high precision measurements. To take full advantage of the physics potential of ILC places great demands on the detector performance. The design of ILD is driven by these requirements. Excellent calorimetry and tracking are combined to obtain the best possible overall event reconstruction, including the capability to reconstruct individual particles within jets for particle ow calorimetry. This requires excellent spatial resolution for all detector systems. A highly granular calorimeter system is combined with a central tracker which stresses redundancy and efficiency. In addition, efficient reconstruction of secondary vertices and excellent momentum resolution for charged particles are essential for an ILC detector. The interaction region of the ILC is designed to host two detectors, which can be moved into the beam position with a push-pull scheme. The mechanical design of ILD and the overall integration of subdetectors takes these operational conditions into account.

202 citations

Journal ArticleDOI
A. Abdesselam1, T. Akimoto2, Phillip Allport3, Jorge Alonso4  +270 moreInstitutions (31)
TL;DR: In this paper, the authors describe the microstrip modules in the barrel section of the SemiConductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC).
Abstract: This paper describes the silicon microstrip modules in the barrel section of the SemiConductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The module requirements, components and assembly techniques are given, as well as first results of the module performance on the fully assembled barrels that make up the detector being installed in the ATLAS experiment.

164 citations

Journal ArticleDOI
Francesca Campabadal1, Celeste Fleta1, M.J. Key1, Manuel Lozano1  +151 moreInstitutions (20)
TL;DR: The ABCD3TA as mentioned in this paper is a 128-channel ASIC with binary architecture for the readout of silicon strip particle detectors in the Semiconductor Tracker of the ATLAS experiment at the Large Hadron Collider (LHC).
Abstract: The ABCD3TA is a 128-channel ASIC with binary architecture for the readout of silicon strip particle detectors in the Semiconductor Tracker of the ATLAS experiment at the Large Hadron Collider (LHC). The chip comprises fast front-end and amplitude discriminator circuits using bipolar devices, a binary pipeline for first level trigger latency, a second level derandomising buffer and data compression circuitry based on CMOS devices. It has been designed and fabricated in a BiCMOS radiation resistant process. Extensive testing of the ABCD3TA chips assembled into detector modules show that the design meets the specifications and maintains the required performance after irradiation up to a total ionising dose of 10 Mrad and a 1-MeV neutron equivalent fluence of 2×1014 n/cm2, corresponding to 10 years of operation of the LHC at its design luminosity. Wafer screening and quality assurance procedures have been developed and implemented in large volume production to ensure that the chips assembled into modules meet the rigorous acceptance criteria.

156 citations

Journal ArticleDOI
J. Albert1, Xiao-Chao Fang2, D.S. Smith3, Clara Nellist4  +291 moreInstitutions (45)
TL;DR: In this article, the ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider.
Abstract: The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.

154 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN as mentioned in this paper was designed to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1)
Abstract: The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

5,193 citations

Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal Article
TL;DR: In this paper, the ATLAS experiment is described as installed in i ts experimental cavern at point 1 at CERN and a brief overview of the expec ted performance of the detector is given.
Abstract: This paper describes the ATLAS experiment as installed in i ts experimental cavern at point 1 at CERN. It also presents a brief overview of the expec ted performance of the detector.

2,798 citations

Book ChapterDOI
01 Jan 1976
TL;DR: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in Solubility with rise in temperature.
Abstract: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in solubility with rise in temperature.

1,573 citations