scispace - formally typeset
Search or ask a question
Author

Manuel Talon

Bio: Manuel Talon is an academic researcher from Michigan State University. The author has contributed to research in topics: Abscission & Citrus × sinensis. The author has an hindex of 66, co-authored 175 publications receiving 22751 citations. Previous affiliations of Manuel Talon include Spanish National Research Council & CEU San Pablo University.


Papers
More filters
Journal ArticleDOI
TL;DR: Blast2GO (B2G), a research tool designed with the main purpose of enabling Gene Ontology (GO) based data mining on sequence data for which no GO annotation is yet available, is presented.
Abstract: Summary: We present here Blast2GO (B2G), a research tool designed with the main purpose of enabling Gene Ontology (GO) based data mining on sequence data for which no GO annotation is yet available. B2G joints in one application GO annotation based on similarity searches with statistical analysis and highlighted visualization on directed acyclic graphs. This tool offers a suitable platform for functional genomics research in non-model species. B2G is an intuitive and interactive desktop application that allows monitoring and comprehension of the whole annotation and analysis process. Availability: Blast2GO is freely available via Java Web Start at http://www.blast2go.de Supplementary material:http://www.blast2go.de -> Evaluation Contact:[email protected]; [email protected]

10,092 citations

Journal ArticleDOI
TL;DR: The Blast2GO framework is used to carry out a detailed analysis of annotation behaviour through homology transfer and its impact in functional genomics research to offer biologists useful information to take into account when addressing the task of functionally characterizing their sequence data.
Abstract: Functional genomics technologies have been widely adopted in the biological research of both model and non-model species. An efficient functional annotation of DNA or protein sequences is a major requirement for the successful application of these approaches as functional information on gene products is often the key to the interpretation of experimental results. Therefore, there is an increasing need for bioinformatics resources which are able to cope with large amount of sequence data, produce valuable annotation results and are easily accessible to laboratories where functional genomics projects are being undertaken. We present the Blast2GO suite as an integrated and biologist-oriented solution for the high-throughput and automatic functional annotation of DNA or protein sequences based on the Gene Ontology vocabulary. The most outstanding Blast2GO features are: (i) the combination of various annotation strategies and tools controlling type and intensity of annotation, (ii) the numerous graphical features such as the interactive GO-graph visualization for gene-set function profiling or descriptive charts, (iii) the general sequence management features and (iv) high-throughput capabilities. We used the Blast2GO framework to carry out a detailed analysis of annotation behaviour through homology transfer and its impact in functional genomics research. Our aim is to offer biologists useful information to take into account when addressing the task of functionally characterizing their sequence data.

3,306 citations

Journal ArticleDOI
TL;DR: The data indicated that culture of both bacteria accumulate bioactive C 19 -gibberellins in relative high amounts and that these GAs appear to be physiologically active in the host plant.
Abstract: The plant-growth-promoting rhizobacteria (PGPR), Bacillus pumilus and Bacillus licheniformis, isolated from the rhizosphere of alder (Alnus glutinosa [L.] Gaertn.) have a strong growth-promoting activity. Bioassay data showed that the dwarf phenotype induced in alder seedlings by paclobutrazol (an inhibitor of gibberellin [GA] biosynthesis) was effectively reversed by applications of extracts from media incubated with both bacteria and also by exogenous GA 3 , Full-scan gas chromatography-mass spectrometry analyses on extracts of these media showed the presence of GA 1 , GA 3 , GA 4 and GA 20 , in addition to the isomers 3-epi-GA 1 and iso-GA 3 . Isotope dilution analysis indicated that epi-GA 1 was an artefact. Likewise, iso-GA 3 is also probably an artifact spontaneously formed during extraction and/or analysis. In both culture media, GA 1 was present in higher concentrations (130-150 ng ml -1 ) than GA 3 (50-60 ng ml -1 ), GA 4 (8-12 ng ml -1 ) and GAS (2-3 ng ml -1 ). The data indicated that culture of both bacteria accumulate bioactive C 19 -gibberellins in relative high amounts and that these GAs appear to be physiologically active in the host plant. The evidence suggests that the promotion of stem elongation induced by the PGPR could be mediated by bacterial GAs.

598 citations

Journal ArticleDOI
TL;DR: High-performance liquid chromatography and gas chromatography-mass spectrometry performed with culture filtrates of FZB42 demonstrated the presence of indole-3-acetic acid (IAA), corroborating it as one of the pivotal plant-growth-promoting substances produced by this bacterium.
Abstract: Phytohormone-like acting compounds previously have been suggested to be involved in the phytostimulatory action exerted by the plant-beneficial rhizobacterium Bacillus amyloliquefaciens FZB42. Analyses by high-performance liquid chromatography and gas chromatography-mass spectrometry performed with culture filtrates of FZB42 demonstrated the presence of indole-3-acetic acid (IAA), corroborating it as one of the pivotal plant-growth-promoting substances produced by this bacterium. In the presence of 5 mM tryptophan, a fivefold increase in IAA secretion was registered. In addition, in the trp auxotrophic strains E101 (ΔtrpBA) and E102 (ΔtrpED), and in two other strains bearing knockout mutations in genes probably involved in IAA metabolism, E103 (ΔysnE, putative IAA transacetylase) and E105 (ΔyhcX, putative nitrilase), the concentration of IAA in the culture filtrates was diminished. Three of these mutant strains were less efficient in promoting plant growth, indicating that the Trp-dependent synthesis of auxins and plant growth promotion are functionally related in B. amyloliquefaciens.

586 citations

Journal ArticleDOI
TL;DR: This work sequence and compare citrus genomes—a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes—and shows that cultivated types derive from two progenitor species.
Abstract: Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes--a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes--and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement.

521 citations


Cited by
More filters
Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: The ability of plants to tolerate salt is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis as mentioned in this paper.

3,546 citations

Journal ArticleDOI
TL;DR: The Blast2GO framework is used to carry out a detailed analysis of annotation behaviour through homology transfer and its impact in functional genomics research to offer biologists useful information to take into account when addressing the task of functionally characterizing their sequence data.
Abstract: Functional genomics technologies have been widely adopted in the biological research of both model and non-model species. An efficient functional annotation of DNA or protein sequences is a major requirement for the successful application of these approaches as functional information on gene products is often the key to the interpretation of experimental results. Therefore, there is an increasing need for bioinformatics resources which are able to cope with large amount of sequence data, produce valuable annotation results and are easily accessible to laboratories where functional genomics projects are being undertaken. We present the Blast2GO suite as an integrated and biologist-oriented solution for the high-throughput and automatic functional annotation of DNA or protein sequences based on the Gene Ontology vocabulary. The most outstanding Blast2GO features are: (i) the combination of various annotation strategies and tools controlling type and intensity of annotation, (ii) the numerous graphical features such as the interactive GO-graph visualization for gene-set function profiling or descriptive charts, (iii) the general sequence management features and (iv) high-throughput capabilities. We used the Blast2GO framework to carry out a detailed analysis of annotation behaviour through homology transfer and its impact in functional genomics research. Our aim is to offer biologists useful information to take into account when addressing the task of functionally characterizing their sequence data.

3,306 citations

Journal ArticleDOI
TL;DR: This review focuses on the known, the putative, and the speculative modes-of-action of PGPR, which include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses.
Abstract: Numerous species of soil bacteria which flourish in the rhizosphere of plants, but which may grow in, on, or around plant tissues, stimulate plant growth by a plethora of mechanisms. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The search for PGPR and investigation of their modes of action are increasing at a rapid pace as efforts are made to exploit them commercially as biofertilizers. After an initial clarification of the term biofertilizers and the nature of associations between PGPR and plants (i.e., endophytic versus rhizospheric), this review focuses on the known, the putative, and the speculative modes-of-action of PGPR. These modes of action include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses. The combination of these modes of actions in PGPR is also addressed, as well as the challenges facing the more widespread utilization of PGPR as biofertilizers.

2,982 citations

Journal ArticleDOI
Shusei Sato, Satoshi Tabata, Hideki Hirakawa, Erika Asamizu  +320 moreInstitutions (51)
31 May 2012-Nature
TL;DR: A high-quality genome sequence of domesticated tomato is presented, a draft sequence of its closest wild relative, Solanum pimpinellifolium, is compared, and the two tomato genomes are compared to each other and to the potato genome.
Abstract: Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.

2,687 citations