scispace - formally typeset
Search or ask a question
Author

Manuela Ott

Bio: Manuela Ott is an academic researcher from University of Zurich. The author has contributed to research in topics: Bayes factor & Bayes' theorem. The author has an hindex of 3, co-authored 7 publications receiving 177 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The relationship between p-values and minimum Bayes factors also depends on the sample size and on the dimension of the parameter of interest as discussed by the authors, and the relationship between the two-sided significance tests for a point null hypothesis in more detail.
Abstract: The p-value quantifies the discrepancy between the data and a null hypothesis of interest, usually the assumption of no difference or no effect. A Bayesian approach allows the calibration of p-values by transforming them to direct measures of the evidence against the null hypothesis, so-called Bayes factors. We review the available literature in this area and consider two-sided significance tests for a point null hypothesis in more detail. We distinguish simple from local alternative hypotheses and contrast traditional Bayes factors based on the data with Bayes factors based on p-values or test statistics. A well-known finding is that the minimum Bayes factor, the smallest possible Bayes factor within a certain class of alternative hypotheses, provides less evidence against the null hypothesis than the corresponding p-value might suggest. It is less known that the relationship between p-values and minimum Bayes factors also depends on the sample size and on the dimension of the parameter of interest. We i...

182 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider p-values in the linear model and propose new minimum Bayes factors that depend on sample size and converge to existing bounds as the sample size goes to infinity.
Abstract: Minimum Bayes factors are commonly used to transform two-sided p-values to lower bounds on the posterior probability of the null hypothesis. Several proposals exist in the literature, but none of them depends on the sample size. However, the evidence of a p-value against a point null hypothesis is known to depend on the sample size. In this article, we consider p-values in the linear model and propose new minimum Bayes factors that depend on sample size and converge to existing bounds as the sample size goes to infinity. It turns out that the maximal evidence of an exact two-sided p-value increases with decreasing sample size. The effect of adjusting minimum Bayes factors for sample size is shown in two applications.

47 citations

Journal ArticleDOI
TL;DR: An important conclusion is that ME modelling in survival analysis is relevant, and a ready-to-use Bayesian solution including R-code is provided.

7 citations

Journal ArticleDOI
TL;DR: The posterior reference analysis (post-RA) as mentioned in this paper is based on two posterior benchmarks: one induced by the improper reference prior, which is minimally informative for the data, and the other induced by a highly anticonservative proper prior.
Abstract: Meta-analysis provides important insights for evidence-based medicine by synthesizing evidence from multiple studies which address the same research question. Within the Bayesian framework, meta-analysis is frequently expressed by a Bayesian normal-normal hierarchical model (NNHM). Recently, several publications have discussed the choice of the prior distribution for the between-study heterogeneity in the Bayesian NNHM and used several "vague" priors. However, no approach exists to quantify the informativeness of such priors, and thus, we develop a principled reference analysis framework for the Bayesian NNHM acting at the posterior level. The posterior reference analysis (post-RA) is based on two posterior benchmarks: one induced by the improper reference prior, which is minimally informative for the data, and the other induced by a highly anticonservative proper prior. This approach applies the Hellinger distance to quantify the informativeness of a heterogeneity prior of interest by comparing the corresponding marginal posteriors with both posterior benchmarks. The post-RA is implemented in the freely accessible R package ra4bayesmeta and is applied to two medical case studies. Our findings show that anticonservative heterogeneity priors produce platykurtic posteriors compared with the reference posterior, and they produce shorter 95% credible intervals (CrI) and optimistic inference compared with the reference prior. Conservative heterogeneity priors produce leptokurtic posteriors, longer 95% CrI and cautious inference. The novel post-RA framework could support numerous Bayesian meta-analyses in many research fields, as it determines how informative a heterogeneity prior is for the actual data as compared with the minimally informative reference prior.

7 citations

Journal ArticleDOI
TL;DR: In this paper, the authors extend this methodology to a logistic regression to obtain a sample-size adjusted minimum Bayes factor for 2'×'2 contingency tables, and study the relationship between this minimum factor and two-sided p−values from Fisher's exact test.
Abstract: p‐Values are commonly transformed to lower bounds on Bayes factors, so‐called minimum Bayes factors. For the linear model, a sample‐size adjusted minimum Bayes factor over the class of g‐priors on the regression coefficients has recently been proposed (Held & Ott, The American Statistician 70(4), 335–341, 2016). Here, we extend this methodology to a logistic regression to obtain a sample‐size adjusted minimum Bayes factor for 2 × 2 contingency tables. We then study the relationship between this minimum Bayes factor and two‐sided p‐values from Fisher's exact test, as well as less conservative alternatives, with a novel parametric regression approach. It turns out that for all p‐values considered, the maximal evidence against the point null hypothesis is inversely related to the sample size. The same qualitative relationship is observed for minimum Bayes factors over the more general class of symmetric prior distributions. For the p‐values from Fisher's exact test, the minimum Bayes factors do on average not tend to the large‐sample bound as the sample size becomes large, but for the less conservative alternatives, the large‐sample behaviour is as expected.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Single-cell variational inference (scVI) is a ready-to-use generative deep learning tool for large-scale single-cell RNA-seq data that enables raw data processing and a wide range of rapid and accurate downstream analyses.
Abstract: Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task.

1,052 citations

Journal ArticleDOI
TL;DR: In some cases the comparison of two models using ICs can be viewed as equivalent to a likelihood ratio test, with the different criteria representing different alpha levels and BIC being a more conservative test than AIC.
Abstract: Choosing a model with too few parameters can involve making unrealistically simple assumptions and lead to high bias, poor prediction, and missed opportunities for insight. Such models are not flexible enough to describe the sample or the population well. A model with too many parameters can fit the observed data very well, but be too closely tailored to it. Such models may generalize poorly. Penalizedlikelihood information criteria, such as Akaike’s Information Criterion (AIC), the Bayesian Information Criterion (BIC), the Consistent AIC, and the Adjusted BIC, are widely used for model selection. However, different criteria sometimes support different models, leading to uncertainty about which criterion is the most trustworthy. In some simple cases the comparison of two models using information criteria can be viewed as equivalent to a likelihood ratio test, with the different models representing different alpha levels (i.e., different emphases on sensitivity or specificity; Lin & Dayton 1997). This perspective may lead to insights about how to interpret the criteria in less simple situations. For example, AIC or BIC could be preferable, depending on sample size and on the relative importance one assigns to sensitivity versus specificity. Understanding the differences among the criteria may make it easier to compare their results and to use them to make informed decisions.

444 citations

Journal ArticleDOI
TL;DR: Researchers commonly use p-values to answer the question: How strongly does the evidence favor the alternative hypothesis relative to the null hypothesis? But pvalues themselves do not directly answer... as discussed by the authors.
Abstract: Researchers commonly use p-values to answer the question: How strongly does the evidence favor the alternative hypothesis relative to the null hypothesis? p-Values themselves do not directly answer...

153 citations

Journal ArticleDOI
TL;DR: The authors suggest language of evidence that allows for a more nuanced approach to communicate scientific findings as a simple and intuitive alternative to statistical significance testing, and provide examples for rewriting results sections in research papers accordingly.
Abstract: Despite much criticism, black-or-white null-hypothesis significance testing with an arbitrary P-value cutoff still is the standard way to report scientific findings. One obstacle to progress is likely a lack of knowledge about suitable alternatives. Here, we suggest language of evidence that allows for a more nuanced approach to communicate scientific findings as a simple and intuitive alternative to statistical significance testing. We provide examples for rewriting results sections in research papers accordingly. Language of evidence has previously been suggested in medical statistics, and it is consistent with reporting approaches of international research networks, like the Intergovernmental Panel on Climate Change, for example. Instead of re-inventing the wheel, ecology and evolution might benefit from adopting some of the 'good practices' that exist in other fields.

149 citations