scispace - formally typeset
Search or ask a question
Author

Mao Yang

Other affiliations: Tsinghua University
Bio: Mao Yang is an academic researcher from Northwestern Polytechnical University. The author has contributed to research in topics: Throughput & Wi-Fi. The author has an hindex of 14, co-authored 155 publications receiving 1100 citations. Previous affiliations of Mao Yang include Tsinghua University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is confirmed that SDWN and WNV may efficiently address the crucial challenges of MWN and significantly benefit the future mobile and wireless network.
Abstract: With the proliferation of mobile demands and increasingly multifarious services and applications, mobile Internet has been an irreversible trend. Unfortunately, the current mobile and wireless network (MWN) faces a series of pressing challenges caused by the inherent design. In this paper, we extend two latest and promising innovations of Internet, software-defined networking and network virtualization, to mobile and wireless scenarios. We first describe the challenges and expectations of MWN, and analyze the opportunities provided by the software-defined wireless network (SDWN) and wireless network virtualization (WNV). Then, this paper focuses on SDWN and WNV by presenting the main ideas, advantages, ongoing researches and key technologies, and open issues respectively. Moreover, we interpret that these two technologies highly complement each other, and further investigate efficient joint design between them. This paper confirms that SDWN and WNV may efficiently address the crucial challenges of MWN and significantly benefit the future mobile and wireless network.

212 citations

Proceedings ArticleDOI
Mao Yang1, Yong Li1, Depeng Jin1, Li Su1, Shaowu Ma2, Lieguang Zeng1 
27 Aug 2013
TL;DR: OpenRAN is proposed, an architecture for software-defined RAN via virtualization that achieves complete virtualization and programmability vertically, and benefits the convergence of heterogeneous network horizontally.
Abstract: With the rapid growth of the demands for mobile data, wireless network faces several challenges, such as lack of efficient interconnection among heterogeneous wireless networks, and shortage of customized QoS guarantees between services. The fundamental reason for these challenges is that the radio access network (RAN) is closed and ossified. We propose OpenRAN, an architecture for software-defined RAN via virtualization. It achieves complete virtualization and programmability vertically, and benefits the convergence of heterogeneous network horizontally. It provides open, controllable, flexible and evolvable wireless networks.

152 citations

Proceedings ArticleDOI
09 Mar 2015
TL;DR: This paper proposes an OFDMA based Multiple Access for IEEE 802.11ax (OMAX) protocol to solve both two challenges above and indicates that the proposed OMAX protocol increases the throughput to 160%.
Abstract: Recently, IEEE drew up a new task group named TGax to draft out the standard IEEE 802.11ax for next generation WLANs. However, the average throughput is very low due to the current medium access control (MAC) protocol. A promising solution for this problem is to draw Orthogonal Frequency Division Multiple Access (OFDMA) into IEEE 802.11ax to enable multiuser access. The key challenges of adopting OFDMA are synchronization and overhead reduction. In this paper, we propose an OFDMA based Multiple Access for IEEE 802.11ax (OMAX) protocol to solve both two challenges above. The whole channel physical channel sensing and fast backoff are adopted to ensure synchronization, while enhanced RTS/CTS mechanism and new frame structure are designed to reduce overhead. Moreover, the mathematic model of OMAX is formulated, and the performance of OMAX is analyzed. The analysis and simulation result indicate that the proposed OMAX protocol increases the throughput to 160%.

61 citations

Proceedings Article
Mao Yang1, Yong Li1, Lieguang Zeng1, Depeng Jin1, Li Su1 
31 Dec 2012
TL;DR: This paper presents a karnaugh-map-like online embedding algorithm of wireless virtualization, which includes: online scheduling method and k Karnaugh- map-likeembedding algorithm, which is not only the first detailed algorithm on embedding problem of wirelessVirtualization, but also the first algorithm handling the online requests of wirelessvirtualization.
Abstract: Wireless virtualization enables multiple concurrent wireless networks running on a shared wireless substrate to support different services (e.g. multimedia, VoIP). A fundamental challenge in wireless virtualization is how to efficiently assign wireless resource to virtual networks (VNs), i.e. embedding problem. However, so far there are few research results related to the embedding problems of wireless virtualization. This paper focuses on two important goals: (1) the embedding algorithm should handle online virtual network requests; (2) an efficient embedding algorithm is needed. Inspired from karnaugh-map, we present a karnaugh-map-like online embedding algorithm of wireless virtualization, which includes: online scheduling method and karnaugh-map-like embedding algorithm. Evaluation results show that our algorithm has better performance. To the best of authors' knowledge, it is not only the first detailed algorithm on embedding problem of wireless virtualization, but also the first algorithm handling the online requests of wireless virtualization.

55 citations

Journal ArticleDOI
TL;DR: In this article, the performance requirements of IEEE 802.11ax are evaluated via a proposed systems and link-level integrated simulation platform (SLISP), and the results confirm that IEEE 802-11ax significantly improves the user experience in high-density deployment, while successfully achieves the average per user throughput requirement in project authorization request (PAR) of IEEE802.11.
Abstract: With the ever-increasing demand for wireless traffic and quality of services (QoS), wireless local area networks (WLANs) have developed into one of the most dominant wireless networks that fully influence human life. As the most widely used WLANs standard, IEEE 802.11 will release the upcoming next generation WLANs standard amendment: IEEE 802.11ax. Thus, this article briefly surveys the key technologies of IEEE 802.11ax. Furthermore, performance requirements of IEEE 802.11ax are evaluated via a proposed systems and link-level integrated simulation platform (SLISP). Simulations results confirm that IEEE 802.11ax significantly improves the user experience in high-density deployment, while successfully achieves the average per user throughput requirement in project authorization request (PAR) of IEEE 802.11ax by four times compared to the legacy IEEE 802.11. To the best of our knowledge, this article is the first work to thoroughly and deeply evaluate the compliance of the performance requirements of IEEE 802.11ax.

53 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 2015
TL;DR: This paper presents an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications, and presents the key building blocks of an SDN infrastructure using a bottom-up, layered approach.
Abstract: The Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms—with a focus on aspects such as resiliency, scalability, performance, security, and dependability—as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

3,589 citations

Posted Content
TL;DR: Software-Defined Networking (SDN) as discussed by the authors is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network.
Abstract: Software-Defined Networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound APIs, network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms -- with a focus on aspects such as resiliency, scalability, performance, security and dependability -- as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

1,968 citations

Journal ArticleDOI
TL;DR: This paper analyzes the MEC reference architecture and main deployment scenarios, which offer multi-tenancy support for application developers, content providers, and third parties, and elaborates further on open research challenges.
Abstract: Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks This paper introduces a survey on MEC and focuses on the fundamental key enabling technologies It elaborates MEC orchestration considering both individual services and a network of MEC platforms supporting mobility, bringing light into the different orchestration deployment options In addition, this paper analyzes the MEC reference architecture and main deployment scenarios, which offer multi-tenancy support for application developers, content providers, and third parties Finally, this paper overviews the current standardization activities and elaborates further on open research challenges

1,351 citations

Journal ArticleDOI
TL;DR: Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies are compared over the 0.5–100 GHz range.
Abstract: This paper provides an overview of the features of fifth generation (5G) wireless communication systems now being developed for use in the millimeter wave (mmWave) frequency bands. Early results and key concepts of 5G networks are presented, and the channel modeling efforts of many international groups for both licensed and unlicensed applications are described here. Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies, are compared over the 0.5–100 GHz range.

943 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of mmWave communications for future mobile networks (5G and beyond) is presented, including an overview of the solution for multiple access and backhauling, followed by the analysis of coverage and connectivity.
Abstract: Millimeter wave (mmWave) communications have recently attracted large research interest, since the huge available bandwidth can potentially lead to the rates of multiple gigabit per second per user Though mmWave can be readily used in stationary scenarios, such as indoor hotspots or backhaul, it is challenging to use mmWave in mobile networks, where the transmitting/receiving nodes may be moving, channels may have a complicated structure, and the coordination among multiple nodes is difficult To fully exploit the high potential rates of mmWave in mobile networks, lots of technical problems must be addressed This paper presents a comprehensive survey of mmWave communications for future mobile networks (5G and beyond) We first summarize the recent channel measurement campaigns and modeling results Then, we discuss in detail recent progresses in multiple input multiple output transceiver design for mmWave communications After that, we provide an overview of the solution for multiple access and backhauling, followed by the analysis of coverage and connectivity Finally, the progresses in the standardization and deployment of mmWave for mobile networks are discussed

887 citations