scispace - formally typeset
Search or ask a question
Author

Maosong Xie

Bio: Maosong Xie is an academic researcher from Dalian Institute of Chemical Physics. The author has contributed to research in topics: Catalysis & Dehydrogenation. The author has an hindex of 5, co-authored 10 publications receiving 1043 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a modified ZSM-5 zeolite catalysts with a fixed bed continuous-flow reactor and with a temperature programmed reactor were used for the de-hydrogenation and aromatization of methane.
Abstract: The dehydrogenation and aromatization of methane on modified ZSM-5 zeolite catalysts has been studied under non-oxidizing conditions with a fixed bed continuous-flow reactor and with a temperature programmed reactor. The results show that benzene is the only hydrocarbon product of the catalytic conversion of methane at high temperature (973 K). The catalytic activity of ZSM-5 is greatly improved by incorporating a metal cation (Mo or Zn). H2 and ethene have been directly detected in the products with a mass spectrometer during TPAR. A carbenium ion mechanism for the activation of methane is suggested.

738 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of Mo loading, calcination temperature, reaction temperature and space velocity on the catalytic performance of methane dehydrogenation and aromatization without using oxidants over Mo/HZSM-5 has been studied.
Abstract: The effect of Mo loading, calcination temperature, reaction temperature and space velocity on the catalytic performance of methane dehydrogenation and aromatization without using oxidants over Mo/HZSM-5 has been studied. The XRD and BET measurements show that Mo species are highly dispersed in the channels of the HZSM-5 zeolite, resulting from the interaction between the Mo species and the zeolite, which also leads to a decrease in its crystallinity. The Bronsted acidity, the channel structure and the state and location of Mo species in the zeolite seem to be crucial factors for its catalytic performance. It was found that 2% Mo/HZSM-5 calcined at 773 K showed the best aromatization activity among the tested catalysts, the methane conversion being 9% at 1013 K with the selectivity to aromatics higher than 90%. The experimental results obtained from the variation of space velocity gave evidence that ethylene is an initial product. On the basis of these results a possible mechanism for methane dehydrogenation and aromatization has been proposed in which both the heterolytic splitting of methane in a solid acid environment and a molybdenum carbene-like complex as an intermediate are of significance.

253 citations

Journal ArticleDOI
TL;DR: In this paper, a reaction model for hydrocarbon formation over Mo/HZSM-5 catalysts is proposed, which involves heterolytic splitting of methane and a molybdenum-carbene intermediate.
Abstract: The conversions of methane and ethane over Mo/HZSM-5 and W/HZSM-5 catalysts are compared. A reaction model for hydrocarbon formation over Mo/HZSM-5 catalysts is proposed, which involves heterolytic splitting of methane and a molybdenum-carbene intermediate. Ethene is shown to be the initial product of methane conversion, and it undergoes further reaction to form aromatics in a solid acid environment. The promotional effect of addition of tungsten in the Mo-W/HZSM-5 catalyst in methane conversion reaction suggests the formation of Mo-W mixed oxide. The product selectivity patterns of Mo/HZSM-5 and W/HZSM-5 catalysts in ethane conversion reaction are consistent with a dual-path model involving dehydrogenation and cracking (or hydrogenolysis) of ethane. The rates of both these reactions over Mo/HZSM-5 are higher than over W/HZSM-5.

71 citations

Book ChapterDOI
TL;DR: In this article, the activation and aromatization of CH4 and C2H6 under nonoxidizing conditions were investigated over Mo(VI)/HZSM-5 and W(VI/HZ SM-5 zeolite catalysts.
Abstract: The activation and aromatization of CH4 and C2H6 under non-oxidizing conditionswere investigated over Mo(VI)/HZSM-5 and W(VI)/HZSM-5 zeolite catalysts. Mo(VI)/HZSM-5 exhibits good activity and selectivity for the conversion of CH4 to aromatics, but for C2H6 conversion the catalyst displays high selectivity to CH4. W(VI)/HZSM-5 is inactive for CH4 activation, but exhibits high selectivity for C2H6 aromatization. The W(VI) species can act as a modifier to improve the activity and the stability of Mo(VI)/HZSM-5 for CH4 conversion.

20 citations

Journal ArticleDOI
TL;DR: In this article, the conversion of C3-C9 paraffins to small olefins over ZSM-5 zeolite was investigated and the role of K and Ba catalysts was to minimize bimolecular hydrogen transfer reactions and enhance the dehydrogenation activity of catalysts.
Abstract: The conversion of C3-C9 paraffins to small olefins over ZSM-5 zeolite is investigated. The small olefins are primary products and are usually converted into other more stable secondary products such as aromatics on the ZSM-5 zeolites. Thermally treated HZSM-5, K/HZSM-5 and Ba/HZSM-5 catalysts were developed and favourable oxidative conditions were introduced for the conversion process to maximize selective conversion of light paraffins to small olefins at the relatively low temperature of 873 K. The role of K and Ba is to minimize bimolecular hydrogen transfer reactions and enhance the dehydrogenation activity of the catalysts. Meanwhile, the oxygen in the gas phase is effective to improve the olefin selectivity and yield. C2-C4 olefin selectivities of 70.4 and 66.8% have been obtained for propane andn-hexane feed-stocks, respectively, at a temperature of 873 K.

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The study compares different catalysts in terms of the reaction mechanism and deactivation pathways and catalytic performance, as dehydrogenation for the production of light olefins has become extremely relevant.
Abstract: A study is conducted to demonstrate catalytic dehydrogenation of light alkanes on metals and metal oxides. The study provides a complete overview of the materials used to catalyze this reaction, as dehydrogenation for the production of light olefins has become extremely relevant. Relevant factors, such as the specific nature of the active sites, as well as the effect of support, promoters, and reaction feed on catalyst performance and lifetime, are discussed for each catalytic Material. The study compares different catalysts in terms of the reaction mechanism and deactivation pathways and catalytic performance. The duration of the dehydrogenation step depends on the heat content of the catalyst bed, which decreases rapidly due to the endothermic nature of the reaction. Part of the heat required for the reaction is introduced to the reactors by preheating the reaction feed, additional heat being provided by adjacent reactors that are regenerating the coked catalysts.

1,306 citations

Journal ArticleDOI
TL;DR: The potential for the production of ethylene or liquid hydrocarbon fuels has not been fully realized as mentioned in this paper, and a number of strategies are being explored at levels that range from fundamental science to engineering technology.

1,063 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of high quality single-walled carbon nanotubes (SWNTs) is accomplished by optimizing the chemical compositions and textural properties of the catalyst material used in the chemical vapor deposition (CVD) of methane.
Abstract: The synthesis of bulk amounts of high quality single-walled carbon nanotubes (SWNTs) is accomplished by optimizing the chemical compositions and textural properties of the catalyst material used in the chemical vapor deposition (CVD) of methane A series of catalysts are derived by systematically varying the catalytic metal compounds and support materials The optimized catalysts consist of Fe/Mo bimetallic species supported on a novel silica−alumina multicomponent material The high SWNT yielding catalyst exhibits high surface-area and large mesopore volume at elevated temperatures Gram quantities of SWNT materials have been synthesized in ∼05 h using the optimized catalyst material The nanotube material consists of individual and bundled SWNTs that are free of defects and amorphous carbon coating This work represents a step forward toward obtaining kilogram scale perfect SWNT materials via simple CVD routes

1,046 citations

Journal ArticleDOI
09 May 2014-Science
TL;DR: It is reported that single iron sites embedded in a silica matrix enable direct, nonoxidative conversion of methane, exclusively to ethylene and aromatics, representing an atom-economical transformation process of methane.
Abstract: The efficient use of natural gas will require catalysts that can activate the first C-H bond of methane while suppressing complete dehydrogenation and avoiding overoxidation. We report that single iron sites embedded in a silica matrix enable direct, nonoxidative conversion of methane, exclusively to ethylene and aromatics. The reaction is initiated by catalytic generation of methyl radicals, followed by a series of gas-phase reactions. The absence of adjacent iron sites prevents catalytic C-C coupling, further oligomerization, and hence, coke deposition. At 1363 kelvin, methane conversion reached a maximum at 48.1% and ethylene selectivity peaked at 48.4%, whereas the total hydrocarbon selectivity exceeded 99%, representing an atom-economical transformation process of methane. The lattice-confined single iron sites delivered stable performance, with no deactivation observed during a 60-hour test.

1,020 citations