scispace - formally typeset
Search or ask a question
Author

Mara Fiorani

Bio: Mara Fiorani is an academic researcher from University of Urbino. The author has contributed to research in topics: Mitochondrion & Ascorbic acid. The author has an hindex of 21, co-authored 70 publications receiving 1882 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that the NO/cGMP-dependent mitochondrial biogenesis is associated with enhanced coupled respiration and content of ATP in U937, L6, and PC12 cells, and that this stimulation isassociated with increased mitochondrial function, resulting in enhanced formation of ATP.
Abstract: We recently found that long-term exposure to nitric oxide (NO) triggers mitochondrial biogenesis in mammalian cells and tissues by activation of guanylate cyclase and generation of cGMP. Here, we report that the NO/cGMP-dependent mitochondrial biogenesis is associated with enhanced coupled respiration and content of ATP in U937, L6, and PC12 cells. The observed increase in ATP content depended entirely on oxidative phosphorylation, because ATP formation by glycolysis was unchanged. Brain, kidney, liver, heart, and gastrocnemius muscle from endothelial NO synthase null mutant mice displayed markedly reduced mitochondrial content associated with significantly lower oxygen consumption and ATP content. In these tissues, ultrastructural analyses revealed significantly smaller mitochondria. Furthermore, a significant reduction in the number of mitochondria was observed in the subsarcolemmal region of the gastrocnemius muscle. We conclude that NO/cGMP stimulates mitochondrial biogenesis, both in vitro and in vivo, and that this stimulation is associated with increased mitochondrial function, resulting in enhanced formation of ATP.

486 citations

Journal ArticleDOI
TL;DR: Intramitochondrial quercetin appears to be functional for prevention of mitochondrial damage as well as for redistribution to the cytosol, when the fraction of the flavonoid therein retained is progressively consumed either by cell-permeant oxidants or by activation of plasma membrane oxidoreductases.
Abstract: Quercetin uptake in Jurkat cells is extremely rapid and associated with a remarkable accumulation of the flavonoid, dependent on its binding to intracellular components. Cell-associated quercetin is biologically active, quantitatively consumed to promote survival in the presence of reactive species, such as peroxynitrite (ONOO−), or reduction of extracellular oxidants via activation of plasma membrane oxidoreductases. In alternative, quercetin is very slowly released upon post-incubation in drug-free medium, an event significantly accelerated by extracellular albumin. Quercetin uptake is also observed in isolated mitochondria, resulting in an enormous accumulation of the flavonoid, consumed under conditions associated with prevention of lipid peroxidation induced by ONOO−. Interestingly, remarkable quercetin accumulation is also detected in the mitochondria isolated from quercetin-pre-loaded cells, and exposure to either ONOO− or extracellular oxidants caused the parallel loss of both the mitochondrial and cytosolic fractions of the flavonoid. In conclusion, Jurkat cells accumulate large amounts of quercetin and even larger amounts of the flavonoid further accumulate in their mitochondria. Intramitochondrial quercetin appears to be functional for prevention of mitochondrial damage as well as for redistribution to the cytosol, when the fraction of the flavonoid therein retained is progressively consumed either by cell-permeant oxidants or by activation of plasma membrane oxidoreductases.

168 citations

Journal ArticleDOI
TL;DR: The results obtained show that H2O2 stimulates protein kinase C activity and DNA synthesis in growth-arrested smooth muscle cells: these events are not followed by cell proliferation but rather by cell death.

80 citations

Journal ArticleDOI
TL;DR: Exposure of rabbit red blood cells to dehydroascorbic acid caused a significant decline in glutathione content which was largely prevented by quercetin, whereas it was insensitive to various antioxidants, iron chelators or scavengers of reactive oxygen species.
Abstract: Exposure of rabbit red blood cells to dehydroascorbic acid (DHA) caused a significant decline in glutathione content which was largely prevented by quercetin, whereas it was insensitive to various antioxidants, iron chelators or scavengers of reactive oxygen species. This response was not mediated by chemical reduction of either extracellular DHA or intracellular glutathione disulfide. In addition, the flavonoid did not affect the uptake of DHA or its reduction to ascorbic acid. Rather, quercetin appeared to specifically stimulate downstream events promoting GSH formation.

77 citations

Journal ArticleDOI
TL;DR: Results, indicating a flow of quercetin from albumin to haemoglobin, and vice versa, are consistent with the possibility that human RBC play a pivotal role in the distribution and bioavailability of circulating flavonoids.
Abstract: Quercetin is rapidly and avidly taken up by human red blood cells (RBC) via a passive diffusion mechanism, driven by flavonoid binding to haemoglobin and resulting in an almost quantitative accumulation of the flavonoid. Heamoglobin-free resealed ghosts accumulated quercetin exclusively in the membrane fraction. Cell-associated quercetin was biological active and could be quantitatively utilised to support the reduction of extracellular oxidants mediated by a transplasma-membrane oxido-reductase. Additional experimental evidence revealed that quercetin uptake declined in the presence of albumin and that, under these conditions, the amount of cell-associated quercetin is enhanced by increasing the RBC number. Quercetin release from flavonoid-preloaded RBC was observed only in the presence of albumin (or in human plasma) and this response was progressively inhibited upon incubation in solutions containing albumin previously exposed to increasing concentrations of quercetin and cleared of the unbound fraction of the flavonoid. Furthermore, exposure to quercetin pre-saturated albumin promoted accumulation of the flavonoid in fresh RBC and this response was a direct function of the extent of albumin saturation. These results, indicating a flow of quercetin from albumin to haemoglobin, and vice versa, are therefore consistent with the possibility that human RBC play a pivotal role in the distribution and bioavailability of circulating flavonoids.

72 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

Journal ArticleDOI
TL;DR: Methods used to trap RS, including spin trapping and aromatic hydroxylation, are critically examined, with a particular emphasis on those methods applicable to human studies and methods used to detect RS in cell culture.
Abstract: Free radicals and other reactive species (RS) are thought to play an important role in many human diseases. Establishing their precise role requires the ability to measure them and the oxidative damage that they cause. This article first reviews what is meant by the terms free radical, RS, antioxidant, oxidative damage and oxidative stress. It then critically examines methods used to trap RS, including spin trapping and aromatic hydroxylation, with a particular emphasis on those methods applicable to human studies. Methods used to measure oxidative damage to DNA, lipids and proteins and methods used to detect RS in cell culture, especially the various fluorescent ‘probes' of RS, are also critically reviewed. The emphasis throughout is on the caution that is needed in applying these methods in view of possible errors and artifacts in interpreting the results. Keywords: Cell culture, free radical, reactive species, antioxidant, oxidative stress, oxidative damage, fluorescent probe, lipid peroxidation, superoxide Introduction Free radicals and other ‘reactive oxygen (ROS)/nitrogen/chlorine species' (for an explanation of these terms see Table 1) are widely believed to contribute to the development of several age-related diseases, and perhaps, even to the aging process itself (Halliwell & Gutteridge, 1999; Sohal et al., 2002) by causing ‘oxidative stress' and ‘oxidative damage' (terms explained in Table 2). For example, many studies have shown increased oxidative damage to all the major classes of biomolecules in the brains of Alzheimer's patients (Halliwell, 2001; Butterfield, 2002; Liu et al., 2003). Other diseases in which oxidative damage has been implicated include cancer, atherosclerosis, other neurodegenerative diseases and diabetes (Hagen et al., 1994; Chowienczyk et al., 2000; Halliwell, 2000a, 2001, 2002a, 2002b; Parthasarathy et al., 2000). If oxidative damage contributes significantly to disease pathology (Table 3 lists the criteria needed to establish this), then actions that decrease it should be therapeutically beneficial (Halliwell, 2001; Lee et al., 2002a; Liu et al., 2003). If the oxidative damage is involved in the origin of a disease, then successful antioxidant treatment should delay or prevent the onset of that disease (Halliwell, 1991, 2002a, 2002b; Galli et al., 2002; Steinberg & Witztum, 2002). To establish the role of oxidative damage (Table 3), it is therefore essential to be able to measure it accurately. For example, the failure of interventions with antioxidants such as vitamin E, β-carotene or ascorbate to decrease disease incidence in several human intervention trials may have simply been due to the failure of these compounds to decrease oxidative damage in the subjects tested (Halliwell, 1999a, 2000c; Levine et al., 2001; Meagher et al., 2001). In this review, we will examine the methods available to measure reactive species (RS) and oxidative damage, with a particular emphasis on those applicable to human studies. Table 1 Nomenclature of reactive species Table 2 Some key definitions Table 3 Criteria for implicating RS as a significant mechanism of tissue injury in human disease Measuring RS in vivo: basic principles Some fascinating techniques such as L-band electron spin resonance (ESR) with nitroxyl probes and magnetic resonance imaging spin trapping are under development to measure RS directly in whole animals (e.g. Berliner et al., 2001; Han et al., 2001; Utsumi & Yamada, 2003), but no probes are currently suitable for human use. Most RS persist for only a short time in vivo and cannot be measured directly. There are a few exceptions: examples include H2O2 (discussed below), and perhaps, NO•, in the sense that serum levels of NO2− have been claimed to measure vascular endothelial NO• synthesis (Kelm et al., 1999), despite the fact that NO2− is quickly oxidized to NO3− in vivo (Kelm et al., 1999; Oldreive & Rice-Evans, 2001). Essentially, there are two approaches to detecting transient RS: attempting to trap these species and measure the levels of the trapped molecules and measuring the levels of the damage done by RS, that is, the amount of oxidative damage. Sometimes other approaches are used. They include measurements of erythrocyte antioxidant defences and of total antioxidant activity of body fluids; falls in these parameters are often taken as evidence of oxidative stress. Erythrocytes cannot synthesize proteins, however, and their antioxidant enzyme levels may drop as they ‘age' in the circulation (Denton et al., 1975). Thus changes in their levels are more likely to reflect changes in the rates of red blood cell turnover: if this slows down, the circulating erythrocytes will be older on average and so levels of antioxidant enzymes in them will appear to fall. Vice versa, if an intervention accelerates red cell removal or increases erythropoiesis, levels of antioxidants in red cells will seem to rise. Hence, such data should be interpreted with caution. Depending on the method that is used to measure it, the plasma or serum ‘total antioxidant capacity' (TAC) usually involves major contributions from urate, ascorbate and sometimes albumin −SH groups (Benzie & Strain, 1996; Halliwell & Gutteridge, 1999; Prior & Cao, 1999; Rice-Evans, 2000; Bartosz, 2003), although different methods measure different things (Schlesier et al., 2002; Bartosz, 2003). Thus, for example, if plasma albumin levels fall, TAC will fall. If urate levels rise, TAC will rise. The multiple changes in blood chemistry that occur in sick people mean that TAC changes should be interpreted with caution. TAC is also influenced by diet, often because consumption of certain foods may produce changes in plasma ascorbate and/or urate levels (Halliwell, 2003b).

2,239 citations

Journal ArticleDOI
TL;DR: This review examines the evidence of cellular oxidants' involvement in the carcinogenesis process, and focuses on the mechanisms for production, cellular damage produced, and the role of signaling cascades by reactive oxygen species.
Abstract: ▪ Abstract Chemical carcinogenesis follows a multistep process involving both mutation and increased cell proliferation. Oxidative stress can occur through overproduction of reactive oxygen and nitrogen species through either endogenous or exogenous insults. Important to carcinogenesis, the unregulated or prolonged production of cellular oxidants has been linked to mutation (induced by oxidant-induced DNA damage), as well as modification of gene expression. In particular, signal transduction pathways, including AP-1 and NFκB, are known to be activated by reactive oxygen species, and they lead to the transcription of genes involved in cell growth regulatory pathways. This review examines the evidence of cellular oxidants' involvement in the carcinogenesis process, and focuses on the mechanisms for production, cellular damage produced, and the role of signaling cascades by reactive oxygen species.

1,487 citations

Journal ArticleDOI
TL;DR: The double-edged sword roles of PARP in DNA damage signaling and cell death are reviewed and the underlying mechanisms of the anti-inflammatory effects ofPARP inhibitors are summarized.
Abstract: Poly(ADP-ribose) polymerase-1 (PARP-1) is a member of the PARP enzyme family consisting of PARP-1 and several recently identified novel poly(ADP-ribosylating) enzymes. PARP-1 is an abundant nuclear protein functioning as a DNA nick-sensor enzyme. Upon binding to DNA breaks, activated PARP cleaves NAD(+) into nicotinamide and ADP-ribose and polymerizes the latter onto nuclear acceptor proteins including histones, transcription factors, and PARP itself. Poly(ADP-ribosylation) contributes to DNA repair and to the maintenance of genomic stability. On the other hand, oxidative stress-induced overactivation of PARP consumes NAD(+) and consequently ATP, culminating in cell dysfunction or necrosis. This cellular suicide mechanism has been implicated in the pathomechanism of stroke, myocardial ischemia, diabetes, diabetes-associated cardiovascular dysfunction, shock, traumatic central nervous system injury, arthritis, colitis, allergic encephalomyelitis, and various other forms of inflammation. PARP has also been shown to associate with and regulate the function of several transcription factors. Of special interest is the enhancement by PARP of nuclear factor kappa B-mediated transcription, which plays a central role in the expression of inflammatory cytokines, chemokines, adhesion molecules, and inflammatory mediators. Herein we review the double-edged sword roles of PARP in DNA damage signaling and cell death and summarize the underlying mechanisms of the anti-inflammatory effects of PARP inhibitors. Moreover, we discuss the potential use of PARP inhibitors as anticancer agents, radiosensitizers, and antiviral agents.

1,410 citations

Journal ArticleDOI
TL;DR: These transcriptional paradigms provide a basic framework for understanding the integration of mitochondrial biogenesis and function with signaling events that dictate cell- and tissue-specific energetic properties.
Abstract: Mitochondria contain their own genetic system and undergo a unique mode of cytoplasmic inheritance. Each organelle has multiple copies of a covalently closed circular DNA genome (mtDNA). The entire...

1,401 citations