scispace - formally typeset
Search or ask a question
Author

Marc A. Hillmyer

Bio: Marc A. Hillmyer is an academic researcher from University of Minnesota. The author has contributed to research in topics: Polymerization & Copolymer. The author has an hindex of 103, co-authored 574 publications receiving 36643 citations. Previous affiliations of Marc A. Hillmyer include University of Colorado Boulder & University of North Carolina at Chapel Hill.
Topics: Polymerization, Copolymer, Polymer, Racism, Nanoporous


Papers
More filters
Journal ArticleDOI
TL;DR: The field of polymers derived from non-petrochemical feedstocks is gaining a great deal of momentum from both a commercial and academic sense using annually renewable feedstocks such as biomass, for the production of new plastics can have both economic and environmental benefits as mentioned in this paper.
Abstract: The field of polymers derived from non‐petrochemical feedstocks is gaining a great deal of momentum from both a commercial and academic sense Using annually renewable feedstocks, such as biomass, for the production of new plastics can have both economic and environmental benefits Fundamental research in the production, modification, property enhancement, and new applications of these materials is an important undertaking The new materials, concepts, and utilizations that result from these efforts will shape the future of polymers from renewable resources This issue of Polymer Reviews focuses on the production and properties of renewable resource polymers and highlights current trends and research directions

900 citations

Journal ArticleDOI
01 Oct 2004-Science
TL;DR: By combining three mutually immiscible polymeric components in a mixed-arm star block terpolymer architecture, this work has observed the formation of a previously unknown class of multicompartment micelles in dilute aqueous solution.
Abstract: By combining three mutually immiscible polymeric components in a mixed-arm star block terpolymer architecture, we have observed the formation of a previously unknown class of multicompartment micelles in dilute aqueous solution. Connection of water-soluble poly(ethylene oxide) and two hydrophobic but immiscible components (a polymeric hydrocarbon and a perfluorinated polyether) at a common junction leads to molecular frustration when dispersed in aqueous solution. The incompatible hydrophobic blocks form cores that are protected from the water by the poly(ethylene oxide) blocks, but both are forced to make contact with the poly(ethylene oxide) by virtue of the chain architecture. The structures that emerge depend on the relative lengths of the blocks and can be tuned from discrete multicompartment micelles to extended wormlike structures with segmented cores.

886 citations

Journal ArticleDOI
27 Apr 2012-Science
TL;DR: Recent developments in the field of block polymers are reviewed, offering alluring opportunities to generate exquisitely tailored materials with unparalleled control over nanoscale-domain geometry, packing symmetry, and chemical composition.
Abstract: Advances in synthetic polymer chemistry have unleashed seemingly unlimited strategies for producing block polymers with arbitrary numbers (n) and types (k) of unique sequences of repeating units. Increasing (k,n) leads to a geometric expansion of possible molecular architectures, beyond conventional ABA-type triblock copolymers (k = 2, n = 3), offering alluring opportunities to generate exquisitely tailored materials with unparalleled control over nanoscale-domain geometry, packing symmetry, and chemical composition. Transforming this potential into targeted structures endowed with useful properties hinges on imaginative molecular designs guided by predictive theory and computer simulation. Here, we review recent developments in the field of block polymers.

881 citations

Journal ArticleDOI
TL;DR: In this article, a systematic approach to the deconvolution of catalyst structure/reactivity relationships is presented and key design criteria required for the development of new catalysts that exert control over the molecular parameters of polyesters and related copolymers have been revealed.
Abstract: This perspective highlights recent research on the preparation of polyesters by the ring-opening polymerization of cyclic esters employing well-characterized metal complexes. Particular focus is placed on the preparation of polylactide because of environmental advantages: it is biodegradable and its feedstock, lactide, is a renewable resource. A recurring theme is the correlation of precatalyst structure, often by X-ray crystallography, with polymerization activity and selectivity. Through this systematic approach to the deconvolution of catalyst structure/reactivity relationships, improved mechanistic understanding has been attained and key design criteria required for the development of new catalysts that exert control over the molecular parameters of polyesters and related copolymers have been revealed.

761 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight five research topics, including the synthesis of renewable monomers and degradable polymers, the development of chemical recycling strategies, new classes of reprocessable thermosets, and the design of advanced catalysts.
Abstract: It is likely that a half-century ago even enthusiastic and optimistic proponents of the synthetic polymer industry (Mr. McGuire included) could not have predicted the massive scale on which synthetic polymers would be manufactured and used today. Ultimately, the future success of this industry will rely on the development of sustainable polymers—materials derived from renewable feedstocks that are safe in both production and use and that can be recycled or disposed of in ways that are environmentally innocuous. Meeting these criteria in an economical manner cannot be achieved without transformative basic research that is the hallmark of this journal. In this Perspective we highlight five research topics—the synthesis of renewable monomers and of degradable polymers, the development of chemical recycling strategies, new classes of reprocessable thermosets, and the design of advanced catalysts—that we believe will play a vital role in the development of sustainable polymers. We also offer our outlook on sev...

603 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 1998-Science
TL;DR: Use of amphiphilic triblock copolymers to direct the organization of polymerizing silica species has resulted in the preparation of well-ordered hexagonal mesoporous silica structures (SBA-15) with uniform pore sizes up to approximately 300 angstroms.
Abstract: Use of amphiphilic triblock copolymers to direct the organization of polymerizing silica species has resulted in the preparation of well-ordered hexagonal mesoporous silica structures (SBA-15) with uniform pore sizes up to approximately 300 angstroms. The SBA-15 materials are synthesized in acidic media to produce highly ordered, two-dimensional hexagonal (space group p6mm) silica-block copolymer mesophases. Calcination at 500°C gives porous structures with unusually large interlattice d spacings of 74.5 to 320 angstroms between the (100) planes, pore sizes from 46 to 300 angstroms, pore volume fractions up to 0.85, and silica wall thicknesses of 31 to 64 angstroms. SBA-15 can be readily prepared over a wide range of uniform pore sizes and pore wall thicknesses at low temperature (35° to 80°C), using a variety of poly(alkylene oxide) triblock copolymers and by the addition of cosolvent organic molecules. The block copolymer species can be recovered for reuse by solvent extraction with ethanol or removed by heating at 140°C for 3 hours, in both cases, yielding a product that is thermally stable in boiling water.

10,807 citations

Journal ArticleDOI
20 Mar 2008-Nature
TL;DR: Some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water are highlighted.
Abstract: One of the most pervasive problems afflicting people throughout the world is inadequate access to clean water and sanitation. Problems with water are expected to grow worse in the coming decades, with water scarcity occurring globally, even in regions currently considered water-rich. Addressing these problems calls out for a tremendous amount of research to be conducted to identify robust new methods of purifying water at lower cost and with less energy, while at the same time minimizing the use of chemicals and impact on the environment. Here we highlight some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water.

6,967 citations

Journal ArticleDOI
TL;DR: In this paper, a family of highly ordered mesoporous (20−300 A) structures have been synthesized by the use of commercially available nonionic alkyl poly(ethylene oxide) (PEO) oligomeric surfactants and poly(alkylene oxide) block copolymers in acid media.
Abstract: A family of highly ordered mesoporous (20−300 A) silica structures have been synthesized by the use of commercially available nonionic alkyl poly(ethylene oxide) (PEO) oligomeric surfactants and poly(alkylene oxide) block copolymers in acid media. Periodic arrangements of mescoscopically ordered pores with cubic Im3m, cubic Pm3m (or others), 3-d hexagonal (P63/mmc), 2-d hexagonal (p6mm), and lamellar (Lα) symmetries have been prepared. Under acidic conditions at room temperature, the nonionic oligomeric surfactants frequently form cubic or 3-d hexagonal mesoporous silica structures, while the nonionic triblock copolymers tend to form hexagonal (p6mm) mesoporous silica structures. A cubic mesoporous silica structure (SBA-11) with Pm3m diffraction symmetry has been synthesized in the presence of C16H33(OCH2CH2)10OH (C16EO10) surfactant species, while a 3-d hexagonal (P63/mmc) mesoporous silica structure (SBA-12) results when C18EO10 is used. Surfactants with short EO segments tend to form lamellar mesost...

6,274 citations

Journal ArticleDOI
TL;DR: New fabrication techniques, such as solid-free form fabrication, can potentially be used to generate scaffolds with morphological and mechanical properties more selectively designed to meet the specificity of bone-repair needs.

5,470 citations

Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations