scispace - formally typeset
Search or ask a question
Author

Marc A. Meyers

Bio: Marc A. Meyers is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Deformation (engineering) & Dislocation. The author has an hindex of 85, co-authored 487 publications receiving 36646 citations. Previous affiliations of Marc A. Meyers include University of California & Instituto Militar de Engenharia.


Papers
More filters
Journal ArticleDOI
TL;DR: The mechanical properties of nanocrystalline materials are reviewed in this paper, with emphasis on their constitutive response and on the fundamental physical mechanisms, including the deviation from the Hall-Petch slope and possible negative slope, the effect of porosity, the difference between tensile and compressive strength, the limited ductility, the tendency for shear localization, fatigue and creep responses.

3,828 citations

MonographDOI
06 Nov 2008
TL;DR: A balanced mechanics-materials approach and coverage of the latest developments in biomaterials and electronic materials, the new edition of this popular text is the most thorough and modern book available for upper-level undergraduate courses on the mechanical behavior of materials as discussed by the authors.
Abstract: A balanced mechanics-materials approach and coverage of the latest developments in biomaterials and electronic materials, the new edition of this popular text is the most thorough and modern book available for upper-level undergraduate courses on the mechanical behavior of materials To ensure that the student gains a thorough understanding the authors present the fundamental mechanisms that operate at micro- and nano-meter level across a wide-range of materials, in a way that is mathematically simple and requires no extensive knowledge of materials This integrated approach provides a conceptual presentation that shows how the microstructure of a material controls its mechanical behavior, and this is reinforced through extensive use of micrographs and illustrations New worked examples and exercises help the student test their understanding Further resources for this title, including lecture slides of select illustrations and solutions for exercises, are available online at wwwcambridgeorg/97800521866758

2,905 citations

Book
27 Sep 1994
TL;DR: In this paper, the authors present a method to produce dynamic deformation at high strain rates by using Shear Bands (Thermoplastic Shear Instabilities) and dynamic fracture.
Abstract: Dynamic Deformation and Waves. Elastic Waves. Plastic Waves. Shock Waves. Shock Waves: Equations of State. Differential Form of Conservation Equations and Numerical Solutions to More Complex Problems. Shock Wave Attenuation, Interaction, and Reflection. Shock Wave-Induced Phase Transformations and Chemical Changes. Explosive-Material Interactions. Detonation. Experimental Techniques: Diagnostic Tools. Experimental Techniques: Methods to Produce Dynamic Deformation. Plastic Deformation at High Strain Rates. Plastic Deformation in Shock Waves. Shear Bands (Thermoplastic Shear Instabilities). Dynamic Fracture. Applications. Indexes.

2,609 citations

Journal ArticleDOI
TL;DR: In this article, the basic building blocks are described, starting with the 20 amino acids and proceeding to polypeptides, polysaccharides, and polyprotein-saccharide.

2,074 citations

Journal ArticleDOI
TL;DR: In this article, a constitutive expression for the twinning stress in BCC metals is developed using dislocation emission from a source and the formation of pile-ups, as rate-controlling mechanism.

1,366 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Abstract: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a “nanostressing stage” located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer (“sword-in-sheath” failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.

5,011 citations