scispace - formally typeset
M

Marc A. Meyers

Researcher at University of California, San Diego

Publications -  502
Citations -  42882

Marc A. Meyers is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Deformation (engineering) & Dislocation. The author has an hindex of 85, co-authored 487 publications receiving 36646 citations. Previous affiliations of Marc A. Meyers include University of California & Instituto Militar de Engenharia.

Papers
More filters
Journal ArticleDOI

Shock Waves and High-Strain-Rate Phenomena in Metals

TL;DR: The proceedings of EXPLOMET 90, the International Conference on the Materials Effects of Shock-Wave and High-Strain-Rate Phenomena, held August 1990, in La Jolla, California, represent a global and up-to-date appraisal of this field as discussed by the authors.
Journal ArticleDOI

Structural Biological Materials: Critical Mechanics-Materials Connections

TL;DR: Structural bio-inspired materials design makes use of the biological structures by inserting synthetic materials and processes that augment the structures' capability while retaining their essential features.
Journal ArticleDOI

Biomedical applications of titanium and its alloys

TL;DR: In this article, vanadium-and aluminum-free alloys have been introduced for implant applications, which are considered to be the most attractive metallic materials for biomedical applications, but vanadium can have a possible toxic effect resulting from released vanadium and aluminum.
Journal ArticleDOI

Biological materials: Functional adaptations and bioinspired designs

TL;DR: In this paper, the authors conduct an analysis connecting the structure (nano, micro, meso, and macro) to the mechanical properties important for a specific function, and address how biological systems respond and adapt to external mechanical stimuli.
Journal ArticleDOI

Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys

TL;DR: In this paper, the authors review the principal mechanical properties of multi-principal element alloys with emphasis on the face-centered cubic systems, such as the CrCoNi-based alloys, and suggest their favorable mechanical properties and ease of processing by conventional means suggest extensive utilization in many future structural applications.