scispace - formally typeset
Search or ask a question
Author

Marc A. Meyers

Bio: Marc A. Meyers is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Deformation (engineering) & Dislocation. The author has an hindex of 85, co-authored 487 publications receiving 36646 citations. Previous affiliations of Marc A. Meyers include University of California & Instituto Militar de Engenharia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Zerilli-Armstrong constitutive equation for polymeric solids was used to simulate the response of a PTFE/Al/W composite to high and high-strain conditions.
Abstract: Dynamic compression experiments were performed on a pressed PTFE/Al/W mixture to understand the composite behavior at high-strain and high-strain rate. The high-strain-rate tests were carried out in a drop-weight apparatus at impact velocities of 3.5 and 5 m/s, providing strain rate so f approximately 4 × 10 2 s −1 . Aluminum jackets of varying thickness were used to ensure that specimens underwent confined deformation but did not separate into fragments. Failure was preceded by extensive plastic deformation concentrated primarily in the PTFE component. W particle–PTFE interface separation provided initiation and propagation of cracks. In extensively deformed specimens (strains of up to −0.875), PTFE nanofibers formed along cracks as a result of shear localization and significant softening caused by plastic deformation. The Zerilli–Armstrong constitutive equation for polymeric solids was used to simulate the response of the composite. Its use is justified by the fact that the majority of plastic strain is concentrated in the PTFE polymer. © 2007 Elsevier B.V. All rights reserved.

91 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of grain size on the dynamic failure of tantalum during laser-shock compression and release was examined and it was shown that polycrystals have a higher spall strength than poly-crystals, which are stronger in tension than ultra-fine grain sized specimens.

90 citations

Journal ArticleDOI
TL;DR: In this article, the authors used molecular dynamics simulations of tantalum polycrystals generated by Voronoi tessellation to study the tensile and compressive response to uniaxial strain loading at strain rates on the order of 10 8 −10 9 ǫ s −1.
Abstract: Tantalum polycrystals (grain sizes varying from 2.5 to 30 nm) generated by Voronoi tessellation were subjected to tension and compression under uniaxial strain loading at strain rates on the order of 10 8 –10 9 s −1 using molecular dynamics (MD) simulations. In contrast with MD simulations of FCC metals, the response in tension is significantly different from that in compression. In tension, fracture is initiated at grain boundaries perpendicular to the loading direction. It propagates along grain boundaries with limited plastic deformation, at a stress in the range 10–14 GPa. This brittle intergranular failure is a consequence of the high strain rate imposed by MD, leading to a stress that exceeds the grain-boundary cohesive strength. Thus, grain-boundary separation is the principal failure mechanism. In compression, on the other hand, there is considerable plastic deformation within the grains. This occurs at stresses higher than failure in tension. The difference between tensile and compressive response for tantalum is attributed to the difficulty in generating dislocations, in contrast with FCC metals, where tensile failure occurs by void nucleation at grain boundaries associated with partial and perfect dislocation emission. In BCC tantalum, both grain-boundary sliding and dislocation emission are much more difficult. The compressive yield stress is found to increase with grain size in the 2.5 nm d

90 citations

Journal ArticleDOI
TL;DR: It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen, and thermal energy conversion calculations including heat transfer suggest that amorphized is a solid-state process.
Abstract: Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C.

90 citations

Journal ArticleDOI
03 Jul 2015-Science
TL;DR: It is hypothesized that the square cross-sectional architecture of a seahorse tail improves mechanical performance in prehension and armored functions (crushing resistance), relative to a cylindrical one, and exploration of these biologically inspired designs provides insight into the mechanical benefits for seahorses to have evolved prehensile tails composed of armored plates organized into square prisms.
Abstract: Whereas the predominant shapes of most animal tails are cylindrical, seahorse tails are square prisms. Seahorses use their tails as flexible grasping appendages, in spite of a rigid bony armor that fully encases their bodies. We explore the mechanics of two three-dimensional-printed models that mimic either the natural (square prism) or hypothetical (cylindrical) architecture of a seahorse tail to uncover whether or not the square geometry provides any functional advantages. Our results show that the square prism is more resilient when crushed and provides a mechanism for preserving articulatory organization upon extensive bending and twisting, as compared with its cylindrical counterpart. Thus, the square architecture is better than the circular one in the context of two integrated functions: grasping ability and crushing resistance.

89 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Abstract: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a “nanostressing stage” located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer (“sword-in-sheath” failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.

5,011 citations