scispace - formally typeset
Search or ask a question
Author

Marc A. Meyers

Bio: Marc A. Meyers is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Deformation (engineering) & Dislocation. The author has an hindex of 85, co-authored 487 publications receiving 36646 citations. Previous affiliations of Marc A. Meyers include University of California & Instituto Militar de Engenharia.


Papers
More filters
Journal ArticleDOI
TL;DR: An X-ray drive has been developed to shock compress metal foils in the solid state using an internally shielded hohlraum with a high contrast shaped pulse from the Nova laser as discussed by the authors.
Abstract: An X-ray drive has been developed to shock compress metal foils in the solid state using an internally shielded hohlraum with a high contrast shaped pulse from the Nova laser. The drive has been characterized, and hydrodynamics experiments designed to study the growth of the Rayleigh-Taylor (R-T) instability in Cu foils at 3 Mbar peak pressures in the plastic flow regime have been started. Preimposed modulations with an initial wavelength of 20-50 μm and amplitudes of 1.0-2.5 μm show growth consistent with simulations. In the Nova experiments, the fluid and solid states are expected to behave similarly for Cu. An analytic stability analysis is used to motivate an experimental design with an Al foil where the effects of material strength of the R-T growth are significantly enhanced. The conditions reached in the metal foils at peak compression are similar to those predicted at the core of Earth.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of polycrystallinity on the shock wave response of Fe-34.5wt.%Ni and Fe-15wt.%.Ni alloys was studied by subjecting monocrystalline and poly-crystalline cylinders to a normal shock pulse having a peak pressure of 7.5 GPa, a pulse duration of 1.2 μs and an average rarefaction rate of 100 GPa μs −1.

9 citations

Journal ArticleDOI
TL;DR: The rupture dynamique peut etre divisee en trois classes: rupture par traction, par compression, and par cisaillement as mentioned in this paper, i.e., contraction, traction, and compression.
Abstract: La rupture dynamique peut etre divisee en trois classes: rupture par traction, par compression, et par cisaillement. Les principaux phenomenes impliques dans la rupture dynamique sont identifies et les modeles mecaniques qui les incorporent sont presentes. La rupture dynamique en metaux ductiles procede par la germination, croissance et coalescence de vides. Dans les materiaux fragiles, elle se processe par la germination, croissance, et coalescence de fissures. Dans la rupture par cisaillement, la formation de bandes de cisaillement joue un role essentiel, et leur evolution est decrite pour un nombre de materiaux. Les elements microstructurels, qui ont un effet sur la formation et propagation de bandes de cisaillement sont enumeres

9 citations

Journal ArticleDOI
TL;DR: In this article, a flat pearl implantation method is used to observe the transient stages of calcium carbonate deposition, the structure of the organic interlayer, and the steady-state growth of aragonite tiles.

9 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Abstract: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a “nanostressing stage” located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer (“sword-in-sheath” failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.

5,011 citations